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Abstract
Photo sharing is increasingly popular, driven by social media plat-
forms like Instagram and services such as Flickr and Google Photos.
However, this growth has been accompanied by significant issues,
particularly image theft. To address this issue, we introduce CAM-
Prints, a robust system for detecting image theft. CAMPrints verifies
whether edited images found online contain camera fingerprints
matching those of user-provided reference images. The system
overcomes the challenges of identifying images altered by diverse
image processing operations. We select a small yet representative
set of operations by categorizing them based on their impact on
pixel values and locations. A deep-learning model is trained to
recognize and compare camera noise patterns pre- and post-editing.
We conduct real-world evaluations involving 36 cameras across
eight make-and-model combinations, along with over 40 image pro-
cessing operations applied to more than 4,000 images. CAMPrints
achieves an average AUC of 0.92, significantly outperforming the
state-of-the-art methods by up to 1.8 times.

CCS Concepts
•Human-centered computing→Ubiquitous andmobile com-
puting; • Computing methodologies→ Computer vision.
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1 Introduction
Photo sharing has become increasingly popular and now accounts
for over 30% of the global digital content market [63]. Social media
platforms have played significant roles in making photography
more accessible, driving its widespread appeal. Instagram is a fa-
vored platform among photographers while photo-sharing sites like
Flickr and Google Photos provide convenient ways for users to store
and share their images with friends and family. The proliferation of
digital content has introduced significant challenges, particularly
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financial losses due to image theft, the unauthorized use of copy-
righted photographs. It is estimated that approximately 2.5 billion
images are stolen each day, leading to annual losses of around $600
billion in potential licensing fees and damages [16, 20, 57]. Exacer-
bating the problem, copyright violators often take deliberate steps
to evade measures like watermarking and embedding metadata. It
is reported that 72% of stolen images are altered and 68% of stolen
images have watermarks removed, signaling intentional copyright
violations [7, 20, 42].

To address the growing issue of image theft, copyright monitoring
services like TinEye [73] and Pixsy [59] have gained prominence.
Pixsy, for instance, has assisted over 200,000 photographers, illustra-
tors, agencies, and artists globally in detecting and managing copy-
right infringement cases [59]. Additionally, many photo-sharing
platforms, such as Flickr, partner with these services to protect
their users’ intellectual property and ensure adherence to copyright
regulations [18, 44, 61]. Such collaborations empower creators to
safeguard their work from unauthorized use while protecting the
integrity of the platforms.

For image theft detection, copyright monitoring services pri-
marily rely on Reverse Image Search, a technique that identifies
similar or identical images on the internet using an image as in-
put [19, 40, 66]. A well-known example is Google Image Search [41].
However, this process typically analyzes visual patterns such as
colors, shapes, and textures, which often result in false positives,
alongside metadata like EXIF data, which can be easily altered or
removed [22, 23, 26, 77]. Recent advancements, both commercial
and academic, focus on leveraging the unique hardware fingerprints
of digital cameras, specifically the photo response non-uniformity
(PRNU) – a distinctive noise pattern caused by imperfections in
imaging sensors [27, 37, 38, 55]. However, these approaches are
highly sensitive to various image processing operations (e.g., crop-
ping, rotation, and sharpening), making them less effective against
deliberately edited images.

In light of this, we pose the following question: can we develop
a robust solution capable of accurately detecting image theft,
even when the images have undergone extensive processing op-
erations? To address this, we propose CAMPrints, a robust system
designed to verify whether an edited test image suspected of image
theft contains camera fingerprints matching those of reference im-
ages provided by the user. The key novelty of CAMPrints lies in the
robust matching algorithm that extracts discernible features from a
camera’s noise pattern (i.e., its unique hardware fingerprint) even
after extensive image processing operations. Figure 1 illustrates a
typical use case for CAMPrints. (1) The user uploads photos to social
media or photo-sharing platforms and simultaneously saves them
in CAMPrints as reference images. (2) A copyright violator steals the
photos, applies intentional edits, and republishes them. (3) Social
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Figure 1: Figure illustrates a typical use case for CAMPrints.
(1) The user uploads photos to social media or photo-sharing
platforms and saves them in CAMPrints as reference images.
(2) A copyright violator steals the photos, applies intentional
edits, and republishes them. (3) Social media and photo-
sharing platforms collaborate with monitoring services to
scan their databases for images suspected of potential im-
age theft and input these images into CAMPrints for further
filtering and verification. (4) For each suspected image, CAM-
Prints extracts its camera’s fingerprint, comparing it with
those of the reference images provided by the user.CAMPrints
determines whether these images originate from the same
camera. If a match is detected, CAMPrints notifies the user
of potential image theft.

media and photo-sharing platforms collaborate with monitoring
services to scan their databases for images suspected of potential
image theft and input these images into CAMPrints for further fil-
tering and verification. (4) For each suspected image, CAMPrints
extracts its camera’s fingerprint, comparing it with those of the ref-
erence images provided by the user. CAMPrints determines whether
these images originate from the same camera. If a match is detected,
CAMPrints notifies the user of potential image theft.

Designing CAMPrints, however, comes with the following chal-
lenges. First, due to the virtually infinite range of possible image
processing operations and their combinations, it is impractical to
account for all of them explicitly. To address this complexity, the
core idea is to identify a small yet representative set of image
processing operations that can achieve high coverage across a broad
spectrum of potential transformations. Since image processing op-
erations primarily affect pixel values, spatial locations, or both (e.g.,
color adjustments affect only pixel values, while rotation affects
only spatial locations), we categorize the coverage of these op-
erations by focusing on the possible combinations of pixel value
and location changes. Leveraging this observation, we propose a
mathematical model to quantify the effects of image processing

operations on pixel values and spatial locations of an image and
its noise patterns (e.g., camera fingerprints). From this, we select
representative image processing operations that introduce a broad
spectrum of value and location changes. By training CAMPrints
using only these representative operations, we significantly reduce
problem complexity while preserving robustness.

Second, training a deep-learningmodel to recognize and compare
noise patterns before and after representative image processing
operations poses an additional challenge. Since image processing
operations modify features of noise patterns in varied ways, di-
rectly inputting all data into the model can hinder convergence. To
overcome this, we employ the Curriculum Learning [69] strategy,
which improves convergence and performance by presenting data
samples in order of increasing difficulty, similar to how humans
learn. We use our proposed mathematical model to quantify learn-
ing difficulty based on the extent of changes in pixel values and
spatial locations (e.g., operations like cropping followed by resizing
are more challenging as they affect both).

We conduct an extensive evaluation of CAMPrints to demon-
strate its effectiveness through real-world experiments. Specifically,
we test CAMPrints using 36 smartphone cameras across eight dif-
ferent make-and-model combinations, with at least three instances
per make-and-model to ensure diversity. The evaluation includes
more than 40 types of image processing operations, covering a wide
range of transformations applied through popular image editing
tools like Photoshop and smartphone apps such as iPhone Pho-
tos. With experiments on over 4,000 images, our results show that
CAMPrints achieves an average area under the ROC curve (AUC)
of 0.92 across all tested image processing operations, significantly
surpassing state-of-the-art methods by up to 1.8 times in terms
of AUC. Furthermore, we conduct experiments using commercial
products, including social media platforms like Instagram, Face-
book, and Tumblr, as well as photo editing tools such as iPhone
Photos, Android Gallery, Snapseed, and Adobe Photoshop. CAM-
Prints demonstrates robustness and effectiveness in detecting image
theft across these scenarios, achieving an AUC of up to 0.93. Addi-
tionally, we integrate CAMPrints with Reverse Image Search, a key
component of existing copyright monitoring systems. Our results
reveal that CAMPrints reduces false positives by over 80%, aver-
aging only 3.9 false positives per search while maintaining high
detection accuracy.

2 Background
We first introduce copyright monitoring services and their limita-
tions. We then present camera “fingerprints” and the physics primer
of these “fingerprint”.

2.1 Copyright Monitoring Services
Copyright monitoring services, such as TinEye and Pixsy [59, 73],
are increasingly popular among photographers to detect unautho-
rized use of their images online. Many social media and photo-
sharing platforms partner with these services to protect their users’
intellectual property and ensure adherence to copyright regula-
tions [18, 44, 61].
Core Functionality. These tools employ Reverse Image Search
to scan billions of web pages and databases, comparing uploaded
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images with indexed content [19, 40, 66]. TinEye, for example, em-
ploys image recognition algorithms to identify matches based on
visual similarities, such as colors, shapes, and textures. By automat-
ing the discovery process, these services save time and provide
photographers with actionable insights to effectively protect their
copyrights.
Limitations. Although these tools are optimized for a high detec-
tion rate of stolen images, they suffer from a significant drawback:
a high number of false positives, where benign images are mistak-
enly identified as matches. This often occurs when images share
common elements, such as landmarks or logos. For example, Pixsy
has acknowledged that search results may incorrectly link to im-
ages with similar street scenes or landmarks taken by different
photographers [59]. These false positives increase the burden on
users, who must review numerous results to determine whether
they are actual infringements. This process is time-consuming and
resource-draining, hindering efficient detection of image theft. To
address this, we develop CAMPrints, a system that reduces false pos-
itives by comparing camera fingerprints while maintaining accurate
detection of image theft.

2.2 “Fingerprints” of Digital Cameras
The “fingerprints” of a digital camera refer to unique traces left on
the images it captures, which can identify the specific camera that
took a particular photo. These fingerprints are typically based on
physical and digital characteristics of the camera, as depicted in
Figure 2(a). These unique traces include hardware-based identifiers
like sensor pattern noise [38] and lens distortion patterns [14, 64]
and software-based ones such as color filter array (CFA) interpola-
tion [5, 31], demosaicing artifacts [6, 68] and EXIF metadata [10, 62].
Sensor Pattern Noise. Every image sensor has small manufac-
turing imperfections, as depicted in Figure 2(b), which can pro-
duce a unique pattern of noise, known as the Photo-Response Non-
Uniformity (PRNU). These imperfections result from two main
factors. (1) Variations in the quality of the raw materials used to
manufacture the sensor can lead to non-uniform sensitivity across
pixels (i.e., material impurities). (2) Small differences in the physi-
cal size of photodiodes and other microscopic components cause
inconsistencies in light capture (i.e., proximity effects). Since PRNU
is inherent to the sensor’s physical properties, it cannot be entirely
eliminated and remains a persistent characteristic, appearing in
every image captured by the camera. The PRNU pattern also re-
mains consistent across all images taken by the same camera [3].
Therefore, PRNU can be extracted from an image and compared
with others to determine if they originate from the same device.
Other Types of “Fingerprints”. Unlike PRNU, other types of
“fingerprints”, such as lens distortion patterns, image processing and
compression artifacts, and EXIF metadata, can be easily modified
or removed using image processing techniques. For example, as the
camera’s software, specifically the Image Signal Processing (ISP)
module, is designed to enhance image quality by adjusting factors
like sharpness, color, and noise reduction, it is highly sensitive to
image processing operations that alter these same characteristics.
Takeaway.While various unique camera characteristics can help
detect image theft, CAMPrints prioritizes the PRNU pattern because
it is consistent, resilient to software modifications, and remains
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Figure 2: (a) depicts physical and digital components of a
camera that may leave unique traces on digital images. (b)
depicts sources of manufacturing imperfections in an image
sensor. (c) depicts the pipeline to extract and match camera
fingerprints. Note that the Test PRNUs are not actual PRNU
patterns and are provided for illustrative purposes to high-
light distinct patterns.

persistent over time. This approach ensures reliable identification
and traceability, even with post-processing or aging of the images.
In the remainder of this paper, we refer to camera fingerprints
as the PRNU or the noise pattern found in images.

2.3 Physics Primer of PRNU
Various physical and operational factors, such as light intensity,
resolution, compression, shutter speed, motion, color sensitivity,
and white balance, can influence PRNU patterns. However, many
previous works [25, 38, 50] have demonstrated that PRNU patterns
can still be reliably extracted and matched from the RGB images.
This demonstrates the effectiveness of the PRNU-based approach
despite these potential variations. We now present the physics
behind the PRNU-based approach.
PRNU Modeling. A camera’s PRNU pattern, 𝐾 , left in a digital
image, 𝐼 , can be modeled as a multiplicative noise – i.e., the amount
of the noise depends on the pixel intensity of the image sensor –
illustrated by the equation: 𝐼 = 𝐼0 (1+𝐾)+𝜖 . 𝐼0 denotes the theoretical
noise-free image (i.e., the ground truth scene to be captured) and 𝜖
denotes random noises from other sources, such as read noise, dark
current, and photon shot noise [67]. Figure 2(c) depicts the pipeline
to extract the PRNU pattern, 𝐾 , from a digital image, 𝐼 , and match a
set of test PRNU patterns, {𝐾𝑡𝑒𝑠𝑡 }, with 𝐾 to identify which images
are captured by the same camera.
PRNU Extraction. To estimate 𝐾 from an image, we first de-
noise the image using a function, 𝐷𝑒𝑛𝑜𝑖𝑠𝑒 (·), to approximate the
noise-free image, 𝐼0 = 𝐷𝑒𝑛𝑜𝑖𝑠𝑒 (𝐼 ). Many techniques have been
proposed to denoise an image, including signal processing tech-
niques such as wavelet-based methods [37, 38], and deep-learning
approaches [17, 45, 60, 79]. Then, we compute the noise residual,
𝑊 = 𝐼 − 𝐷𝑒𝑛𝑜𝑖𝑠𝑒 (𝐼 ) = 𝐾 × 𝐷𝑒𝑛𝑜𝑖𝑠𝑒 (𝐼 ) + 𝜖 . As 𝜖 usually follows
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Figure 3: (a) shows a sample image of a clear sky to effectively
visualize PRNU patterns. (b)–(d) display images processed
using Color Effects, Distortion, and Crop+Resize, respectively.
(e)–(h) present the corresponding extracted noise patterns
along with their matching scores (i.e., 𝑙𝑜𝑔(𝑃𝐶𝐸)) compared to
the reference noise pattern. We advise the readers to view
this figure in color.

a Gaussian distribution, we can use maximum likelihood estima-
tion [56] to approximate 𝐾 using the equation: �̂� =

∑
𝑙 𝑊𝑙 𝐼𝑙∑
𝑙 𝐼𝑙 𝐼𝑙

.
PRNU Matching. To compare a reference PRNU, 𝐾𝑟𝑒 𝑓 , and a test
PRNU,𝐾𝑡𝑒𝑠𝑡 , Peak-to-Correlation Energy (PCE) is a commonly used
metric for assessing their similarity [38, 58]. PCE is derived from the
Normalized Cross-Correlation (NCC) [80] between the two PRNU
patterns. While NCC quantifies the alignment and overlap of the
patterns based on pixel intensities, PCE refines this measurement
by normalizing the peak correlation value against the energy of
the surrounding correlation map. This makes PCE more resilient to
variations in image content and size than NCC. A PCE value above a
predefined threshold indicates that the PRNUs likely originate from
the same camera. Therefore, selecting an appropriate threshold is
critical for balancing the trade-off between false positives and false
negatives in PRNU matching.
Limitations of PCE. Using PCE as a similarity metric necessitates
proper spatial alignment of PRNU patterns, but geometric transfor-
mations, such as rotation and perspective transformation, can lead
to misalignment of PRNU patterns by altering pixel locations. Fig-
ure 3 illustrates the impact of these transformations. To effectively
visualize the noise patterns, we start with a sample image of a clear
sky (i.e., Original). The image is then processed using three repre-
sentative operations: Color Effects, Distortion, and Crop+Resize, with
the resulting images shown in Figure 3(b)–(d), respectively. Subse-
quently, Figure 3(e)–(h) displays the corresponding extracted noise
patterns along with their matching scores (i.e., 𝑙𝑜𝑔(𝑃𝐶𝐸)) compared
to the reference noise pattern. We observe a significant drop in the
matching score from 3.56 to 1.36 as the extent of image modifi-
cations increases. Note that 𝑙𝑜𝑔(𝑃𝐶𝐸) < 3 usually indicates that
two images are taken by different devices. In addition, other image
processing operations, like noise addition and reduction, also affect
PRNU patterns significantly by altering the embedded noise signal.
As a result, PCE demonstrates limited robustness when images
undergo image processing operations, highlighting the necessity
for CAMPrints to address these challenges.

3 Core Idea and Feasibility Study
The core idea of CAMPrints lies in the assumption that the PRNU
patterns of images taken by the same sensor are similar and those
by different sensors are distinguishable, even after extensive image
processing operations. To mitigate the impact of these operations,
CAMPrints utilizes deep learning to learn an encoding function,
𝐸𝑛𝑐 (·), to transform a PRNU pattern to a lower-dimensional embed-
ding. The embedding distance will be small if the images are taken
by the same sensor and will be large otherwise. Data augmenta-
tion of representative image processing operations ensures that
the deep learning model can adapt to images processed by various
types of operations.
Extended PRNU Modeling. Since the PRNU modeling presented
in §2.3 does not account for image processing operations, we pro-
pose an extended PRNU model given by 𝐼 = 𝑇 (𝐼0 (1+𝐾) +𝜖), where
𝑇 is the product of transformation matrices representing image
processing operations, defined as 𝑇 =

∏
𝑇𝑖 (note that 𝑇𝑖 can be

either pre-multiplied or post-multiplied). After denoising the im-
age, 𝑇 remains in the PRNU pattern, as derived from the equation:
𝑊 = 𝑇𝐾 × 𝐷𝑒𝑛𝑜𝑖𝑠𝑒 (𝐼 ) +𝑇𝜖 . This is demonstrated by the example
patterns shown in Figure 3, where image operations such as Distor-
tion and Crop+Resize are applied to the original image. By applying
the same transformation matrix (i.e., 𝑇𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 or 𝑇𝑐𝑟𝑜𝑝+𝑟𝑒𝑠𝑖𝑧𝑒 ) to
the reference noise pattern, we can obtain noise patterns similar to
those in Figure 3(g) and (h). Therefore, with this extended PRNU
modeling, calculating �̂� using the equation 𝑇�̂� =

∑
𝑙 𝑊𝑙 𝐼𝑙∑
𝑙 𝐼𝑙 𝐼𝑙

becomes
extremely challenging, as 𝑇 is unknown and may alter the distribu-
tion of 𝑇𝜖 .
Rationale Behind Core Idea.With the extended PRNU modeling,
directly estimating 𝐾 is extremely challenging. Instead, we adopt
a different approach by assuming that the noise residue of images
taken by the same sensor is similar and those by different sensors
are distinguishable. We propose an encoding function, 𝐸𝑛𝑐 (·), de-
signed to suppress irrelevant details of𝑊 that are susceptible to
𝑇 , ensuring that 𝐸𝑛𝑐 (𝑊1) and 𝐸𝑛𝑐 (𝑊2) are similar when𝑊1 and
𝑊2 are obtained from the same camera. Since 𝐸𝑛𝑐 (·) essentially
serves as the “universal” inverse function, 𝑇 −1, to every possible 𝑇 ,
the key to its effectiveness lies in ensuring that 𝐸𝑛𝑐 (·) captures as
many types of image processing operations as possible.
Challenge and Solution. The primary challenge, however, is the
virtually infinite range of possible image processing operations
and their combinations, making it impractical to account for all of
them explicitly. To address this complexity, CAMPrints identifies
a small, yet representative set of image processing operations
that can achieve high coverage across the broad spectrum of
potential transformations. Since image processing operations
primarily affect pixel values, spatial locations, or both, we can
streamline the coverage of these operations by focusing on the
possible combinations of pixel value and location changes.
Feasibility Study.We conduct a feasibility study to evaluate our
hypothesis that a small but representative set of operations exists.
We find this set by quantifying the coverage of each operation. We
analyze the impact of each operation on pixel values and spatial
locations in both the image and noise pattern across various param-
eters while preserving overall similarity to the original. Specifically,
we measure pixel value changes using Kullback-Leibler Divergence
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Figure 4: (a) highlights representative operations that pro-
duce a broad range of pixel value and location changes,
demonstrating high coverage. (b) exemplifies operationswith
limited coverage.

(KLD) [21, 48] by computing the pixel intensity distributions (i.e.,
normalized pixel histograms) of the original and processed images.
KLD quantifies how much the processed image’s pixel distribution
deviates from the original’s. We measure pixel location changes
using optical flow [4] by estimating motion vectors of pixels be-
tween the original and processed images. The magnitude of these
vectors reflects how much the pixel locations have shifted due to
the operation.
Results and Insights. Figure 4 illustrates the impact of example
image processing operations. Figure 4(a) highlights representative
operations that produce a broad range of pixel value and location
changes, demonstrating high coverage. In contrast, Figure 4(b) ex-
emplifies operations with limited coverage. Since the effects of
certain operations can be additive (e.g., combining operations (1)
and (2) to achieve a broader range of changes), it is possible to
optimize coverage along each dimension (value or location). Addi-
tionally, achieving high coverage for both the image and the PRNU
pattern is essential, as image processing operations may affect them
differently, resulting in four distinct dimensions. Consequently, we
optimize four dimensions by identifying a core set of four repre-
sentative operations: (1) Contrast, (2) Distortion, (3) Add Noise,
and (4) Crop+Resize. CAMPrints leverages this set to train its deep
learning models (see §4.5), significantly simplifying the problem
while maintaining robustness. However, it is important to note
that our approach focuses on quantifying suitable representative
operations in terms of improving the coverage, while alternative
sets of operations may also be viable.

4 System Design
In this section, we present CAMPrints’s system design.

4.1 System Model
System Goal and Requirements. CAMPrints aims to determine
whether an image suspected of image theft is captured by the same
camera as the reference images provided by the copyright owner,
utilizing the unique camera fingerprints embedded in the images.
Specifically, images taken by different camera instances but the
same make-and-model should be flagged as benign images even
when they capture similar scenes (e.g., same landmarks). On the
contrary, reusing the same image with editing should be flagged as

image theft. We design CAMPrints to satisfy the following require-
ments: (1) accurately determine whether the camera fingerprints
of the test image match those of the reference images (device-level
accuracy); (2) process each image within a few seconds (speed); (3)
adjust the system settings flexibly to prioritize minimizing either
the false positive rate or the false negative rate (usability).
Threat Model. The attackers (i.e., copyright violators) aim to reuse
or alter the image in a way that avoids detection of image theft while
preserving its artistic style, structure, and core content. They can
use image editing software and test against detection methods but
will not employ transformations that completely alter or regenerate
the image. This excludes diffusion models and extreme processing,
such as severe down-sampling. The modified image must retain
similarity within a defined threshold.

4.2 System Overview
CAMPrints determines whether the camera fingerprints of a test im-
age, intentionally modified by the copyright violator, match those of
the reference images. CAMPrints utilizes the Photo-Response Non-
Uniformity (PRNU), a distinct noise pattern caused by minute man-
ufacturing imperfections in image sensors (see §2.2). As depicted
in Figure 5, CAMPrints is divided into the Training and Verification
phases.
1○ Training Phase. The Training Phase is a one-time process
where social media and photo-sharing platforms together with
copyright monitoring service providers train and deploy CAMPrints.
They collect online public datasets containing images and their
corresponding camera labels (i.e., device models and IDs) to train
the deep learning models for extracting and matching features from
PRNU patterns. During this phase, CAMPrints first processes the
dataset in the Data Processing module (§4.3) to generate image
triplets to improve data efficiency and simulate potential image
modifications by applying a predefined set of image processing
operations. In the Noise Pattern Extractor module (§4.4), CAMPrints
fine-tunes a deep learning model, pre-trained for image denoising,
to extract noise patterns (i.e., PRNU patterns) from the images.
Finally, in the Embedding Extractor module (§4.5), CAMPrints learns
to extract distinctive features from noise patterns before and after
image processing operations, while filtering out irrelevant details
susceptible to alteration by these operations.
2○ Verification Phase. In the Verification Phase, social media and
photo-sharing platforms, and copyright monitoring services first
scan their databases for images suspected of theft and then input
these images to CAMPrints for detailed filtering and verification.
CAMPrints requires the user to provide a set of images captured
by the same camera to serve as references for camera fingerprint
matching. For each suspected image, CAMPrints begins by using
the trained models in the Noise Pattern Extractor module (§4.4) to
extract the noise patterns from both the reference and the sus-
pected image. It then generates the corresponding embeddings
in the Embedding Extractor module (§4.5). Finally, in the Camera
Fingerprint Matching module (§4.6), CAMPrints calculates the simi-
larity score, 𝑆𝑖𝑚, between the mean of the reference embeddings
and the test embedding, comparing it to a predefined threshold. If
𝑆𝑖𝑚 is above the threshold, CAMPrints outputs a match, indicating
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Figure 5: Figure depicts an overview of the system design. CAMPrints is divided into Training and Verification phases. The
Training Phase is a one-time process where social media and photo-sharing platforms together with copyright monitoring
service providers train and deploy CAMPrints using online public datasets. In the Verification Phase, these platforms and
services first scan their databases for images suspected of theft and then input these images to CAMPrints. It extracts and
matches the embeddings of user-provided reference images and the suspected image using the trained models. CAMPrints
alerts the user when a match occurs, indicating potential image theft.

that the suspected image likely originates from the same camera as
the reference images, suggesting a potential image theft.

4.3 Data Processing
Data Processing module processes the online public dataset contain-
ing images and their corresponding camera labels (i.e., device mod-
els and IDs). It consists of two sub-modules. First, the Triplet Gener-
ation sub-module (§4.3.1) generates image triplets, (𝑎𝑛𝑐, 𝑝𝑜𝑠, 𝑛𝑒𝑔),
consisting of an anchor, a positive, and a negative image. We ensure
that the anchor and positive images are captured by the same cam-
era, while the negative image is taken by a different camera than
the anchor. Second, the Data Augmentation sub-module (§4.3.2) sim-
ulates potential image modifications by applying an image process-
ing operation, selected from a predefined set of image processing
operations (see §3), to positive and negative images.

4.3.1 Triplet Generation. Although images are widely available
online, their device information, such as camera specifications, is
often missing or difficult to obtain, and collecting large datasets
for every camera is impractical. As CAMPrints does not require
device information from users, we need to efficiently utilize the
limited labeled data publicly available online. Hence, we create
image triplets, (𝑎𝑛𝑐, 𝑝𝑜𝑠, 𝑛𝑒𝑔), which allow for training on smaller
datasets through different permutations of relative comparisons.
Training with triplets optimizes a similarity metric by maximizing
the similarity between 𝑎𝑛𝑐 and 𝑝𝑜𝑠 while minimizing it with 𝑛𝑒𝑔.
Specifically, we form triplets by selecting all images in the dataset
as 𝑎𝑛𝑐 and carefully choosing 𝑝𝑜𝑠 and 𝑛𝑒𝑔. We first identify all
images taken by the same camera as 𝑎𝑛𝑐 and compute the content
similarity using a pre-trained ResNet-50 [43]. The image with the
lowest content similarity is chosen as 𝑝𝑜𝑠 to prevent the model from
overfitting on image content, allowing it to focus on the camera’s
noise pattern. For 𝑛𝑒𝑔, we randomly select 𝑀 cameras different

from the camera of 𝑎𝑛𝑐 (with𝑀 = 5 empirically set to balance data
variety and training time) and choose the image with the highest
content similarity from each camera as 𝑛𝑒𝑔.

4.3.2 Data Augmentation. In real-world scenarios, images may
undergo various image processing operations such as compression,
resizing, cropping, noise addition, and color adjustments. By incor-
porating these transformations during training, data augmentation
exposes the model to a wide range of image variations, helping
it learn to identify noise patterns that remain consistent despite
such modifications. Given the virtually infinite number of possible
image processing operations and their combinations, it is imprac-
tical to account for all of them explicitly. Instead, we identify a
small yet representative set of image processing operations that
provide broad coverage of potential transformations (see §3). This
set includes four image processing operations: color effects, barrel
distortion, Gaussian noise addition, and crop and resize. We apply
these image processing operations to 𝑝𝑜𝑠 and 𝑛𝑒𝑔 images.

4.4 Noise Pattern Extractor
In thismodule,CAMPrints aims to extract the camera’s noise pattern
(i.e., PRNU pattern) from an input image.
Training Phase. In this phase, CAMPrints first learns how to de-
noise the input image, 𝐼 by the denoising function, 𝐷𝑒𝑛𝑜𝑖𝑠𝑒 (·),
and then obtains the noise pattern by subtracting the denoised
image,𝑊 = 𝐼 − 𝐷𝑒𝑛𝑜𝑖𝑠𝑒 (𝐼 ). Specifically, CAMPrints fine-tunes a
deep learning model [71] initialized with pre-trained weights for
the image denoising task1, which removes noise from corrupted
images while preserving their essential details and structures. We
name this model as Noise Pattern Extractor (𝑁𝑃𝐸). 𝑁𝑃𝐸 is initially
trained using pairs of noisy and clean images, where it learns to
1The model is pre-trained using datasets that contain high-resolution images along
with their corresponding noisy versions (i.e., adding synthetic Gaussian noise).
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Figure 6: Figure depicts the Curriculum Learning strategy
where operations are applied to 𝑝𝑜𝑠 and 𝑛𝑒𝑔 images based on
their learning difficulty. We dynamically determine the diffi-
culty using average Triplet Loss and pixel value and location
measures (see §3).

predict the clean image from the noisy input by minimizing the
Mean Squared Error (MSE). As depicted in Figure 6, we utilize the
pre-trained weights and continue fine-tuning the model with a se-
lective backward pass. During this process, we only backpropagate
the loss to update the weights of the 𝑁𝑃𝐸 in epochs when the im-
age processing operations are particularly challenging or when the
performance of the Embedding Extractor (𝐸𝐸; see §4.5) has nearly
saturated (i.e., the loss plateaus). This approach ensures that the
model focuses on refining the 𝑁𝑃𝐸 when the difficulty of the task
increases or when further improvements to 𝐸𝐸 are minimal.
Verification Phase. CAMPrints processes the reference images
and the suspected image to obtain corresponding noise patterns,
{𝑊𝑟𝑒 𝑓 } and𝑊𝑡𝑒𝑠𝑡 .

4.5 Embedding Extractor
In this module, CAMPrints extracts distinctive features from noise
patterns,𝑊 , before and after various image processing operations,
filtering out irrelevant details susceptible to alteration by these
operations. As depicted in Figure 7, image processing operations
can shift noise patterns away from their original clusters, with
unprocessed patterns represented by filled circles and processed
ones by outlined circles. This shift makes matching challenging,
as distances in the feature space can become misleading (e.g., 𝑎𝑛𝑐 -
𝑝𝑜𝑠 may appear farther than 𝑎𝑛𝑐 - 𝑛𝑒𝑔 due to image processing op-
erations). To address this issue, CAMPrints employs an embedding
network, 𝐸 (·), to optimize the feature space, “pulling” 𝑎𝑛𝑐 and 𝑝𝑜𝑠
closer while “pushing” 𝑎𝑛𝑐 and 𝑛𝑒𝑔 apart. After training, patterns
from the same camera form tighter clusters (e.g., 𝐸 (𝑎𝑛𝑐) - 𝐸 (𝑝𝑜𝑠) is
closer than 𝐸 (𝑎𝑛𝑐) - 𝐸 (𝑛𝑒𝑔)), improving camera matching accuracy.
Training Phase. In this phase, we train an embedding network de-
signed to filter out irrelevant details in noise patterns that are easily
altered by image processing operations while preserving consistent
features before and after these operations. The primary challenge
lies in the fact that different image processing operations introduce
shifts in the feature space with varying directions and magnitudes.
Training the model with all types of image processing operations si-
multaneously can confuse the network and hinder convergence. To
address this, we employ the Curriculum Learning strategy [69],
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Figure 7: Figure depicts the effect of Embedding Extractor
(𝐸𝐸; see §4.5) in the feature space.

where the model learns from data samples in a progression of in-
creasing difficulty, similar to how humans learn, to enhance both
convergence and performance. This approach is illustrated in Fig-
ure 6. Specifically, we first rank image processing operations based
on their impact on pixel values and spatial locations (see §3). Op-
erations that affect both pixel values and spatial locations, such
as cropping and resizing, are considered more challenging. In con-
trast, operations like geometric distortion primarily affect spatial
locations, making them less complex (see Figure 4). During training,
we dynamically update the difficulty metric by computing the aver-
age triplet loss for each epoch. Every four epochs, we re-arrange
the order of applying image processing operations based on this
updated difficulty metric to ensure an optimal learning progression.
VerificationPhase.CAMPrints processes the noise patterns, {𝑊𝑟𝑒 𝑓 }
and𝑊𝑡𝑒𝑠𝑡 to obtain embeddings, {𝑒𝑚𝑏𝑒𝑑𝑟𝑒 𝑓 } and 𝑒𝑚𝑏𝑒𝑑𝑡𝑒𝑠𝑡 .

4.6 Camera Fingerprint Matching
CAMPrints processes reference embeddings, {𝑒𝑚𝑏𝑒𝑑𝑟𝑒 𝑓 }, and a test
embedding, 𝑒𝑚𝑏𝑒𝑑𝑡𝑒𝑠𝑡 , as input. It begins by aggregating the refer-
ence embeddings through theirmean, 𝑒𝑚𝑏𝑒𝑑𝑟𝑒 𝑓 =𝑚𝑒𝑎𝑛({𝑒𝑚𝑏𝑒𝑑𝑟𝑒 𝑓 }).
Next, CAMPrints computes a similarity score, 𝑆𝑖𝑚, between the
aggregated reference embeddings and the test embedding. The
similarity score is calculated using a combination of cosine simi-
larity, 𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚, and Euclidean distance, 𝑑𝑖𝑠𝑡 , defined as 𝑆𝑖𝑚 =

𝛼 ·𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚+𝛽 ·𝑑𝑖𝑠𝑡 . Finally, CAMPrints compares 𝑆𝑖𝑚 to a prede-
fined threshold, 𝑡 . If 𝑆𝑖𝑚 > 𝑡 , the model outputs a match, indicating
that the test image likely originates from the same camera as the
reference images, suggesting potential image theft.

5 Evaluation
This section evaluates CAMPrints through comprehensive real-
world experiments.

5.1 Experiment Setup
5.1.1 Dataset and Devices. We evaluate CAMPrints with SOCRatES
dataset [30], a benchmark dataset for source camera identification –
i.e., identifying which source camera captures the input image. We
ensure at least three different instances per make-and-model to
evaluate CAMPrints’s effectiveness in distinguishing device-level
camera fingerprints. We have more than 4,000 images from 36
different devices from eight make-and-model combinations across
five popular smartphone brands, namely Apple, Samsung, Motorola,
LG, and Sony, as depicted in Figure 8(a). We conduct this study
upon the approval of our institution’s Institutional Review Board.
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Figure 8: Figure depicts CAMPrints’s evaluation setup and
experiments. (a) summary of tested devices. (b) data prepara-
tion procedure. (c) controlled experiments. (d) experiments
using commercial software. (e) setup and procedure of the
end-to-end experiments.

5.1.2 Data Preparation. Figure 8(b) depicts a flowchart of our data
preparation. For each device, we randomly split the images into
80% for training and 20% for testing. We train the model using
only four types of image processing operations (see §4.3), namely
color effects, barrel distortion, Gaussian noise addition, and crop and
resize. For testing, we pair different sets of 𝑁 reference images,
{𝑟𝑒 𝑓 _𝑖𝑚𝑔}, and test images, 𝑡𝑒𝑠𝑡_𝑖𝑚𝑔, where reference and test
images can be taken from the same or different devices. We apply
image processing operations to all test images with random param-
eters (e.g., cropping ratio can be a random value between 0.5 and 1).
In total, we evaluate CAMPrints with ten single operations and 30
combinations of operations on over 4,000 images.

5.1.3 Baseline. We compare CAMPrints with three baseline meth-
ods, namelyDRUNET [13],MWDCNN [72], andWiener [9]. DRUNET
and MWDCNN are state-of-the-art academic proposals, while the
Wiener method is commonly adopted in commercial image forensic
products. These baseline methods extract the noise patterns from
both reference images and test images and then compare them us-
ing the Peak-to-Correlation Energy (PCE) score (see §2.3). A large
score (generally > 102) indicates that the images belong to the same
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Figure 9: Figure depicts examples of image processing oper-
ations on iOS categorized into those affecting pixel values
(𝑜𝑝𝑠𝑣𝑎𝑙𝑢𝑒 ) and locations (𝑜𝑝𝑠𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛). Combinations affect both
values and locations (𝑜𝑝𝑠𝑏𝑜𝑡ℎ). Note that we evaluate CAM-
Prints with more operations.

camera. For multiple reference images, they adopt the maximum
likelihood estimation (MLE) approach to average the noise patterns.

5.1.4 Evaluation Metrics. We use the following metrics to evaluate
CAMPrints. True Positives (TP) refers to the number of actual
image theft cases accurately detected (i.e., reference images and test
images captured by the same camera). True Negatives (TN ) is the
number of benign images accurately rejected (i.e., reference and
test images captured by different cameras). False Negatives (FN )
refers to the number of actual image theft cases incorrectly rejected.
False Positives (FP) is the number of benign images incorrectly
detected as image theft cases, indicating false alarms. Furthermore,
as CAMPrints and baseline methods are threshold-based, we use the
Receiver Operating Characteristic (ROC) curve to measure the true
positive rate (TPR) and false positive rate (FPR) at every possible
threshold. TPR measures the proportion of actual image theft cases
correctly detected. 𝑇𝑃𝑅 = 𝑇𝑃

𝑇𝑃+𝐹𝑁 . On the contrary, FPR measures
the proportion of benign imagesmistakenly identified as image theft
cases. 𝐹𝑃𝑅 = 𝐹𝑃

𝐹𝑃+𝑇𝑁 . We use the area under the curve (AUC) to
measure the overall performance and effectiveness of CAMPrints
and baseline methods in detecting image theft with high TPR and
low FPR.

5.2 Overall Performance
We evaluate CAMPrints with a total of 40 image processing oper-
ations2 across three categories – i.e., those affecting pixel values
(𝑜𝑝𝑠𝑣𝑎𝑙𝑢𝑒 ) and pixel locations (𝑜𝑝𝑠𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛), and combinations of
these image processing operations, which affect both pixel values
and locations (𝑜𝑝𝑠𝑏𝑜𝑡ℎ). Figure 9 depicts examples of image pro-
cessing operations. We compare CAMPrints with three baseline
methods, namely DRUNET, Wiener, and MWDCNN. We prepare a
balanced dataset consisting of 50% image theft cases and 50% benign
images (i.e., images with similar scenes but taken from different
devices) to ensure unbiased evaluation metrics.
Results. Figure 10 depicts the ROC curve of CAMPrints alongside
baseline methods for all 40 image processing operations. The anal-
ysis highlights that CAMPrints consistently outperforms baseline
methods in detecting image theft cases, as evidenced by its high
TPR and relatively low FPR. For instance, when the acceptable FPR
is set to 0.2, CAMPrints achieves a TPR of 0.87, whereas DRUNET,
2Comparable to iPhone Photos app offering 15 - 20 distinct operations
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Figure 10: Figure depicts the ROC Curve of CAMPrints and
baseline methods.

MWDCNN, and Wiener only reach TPRs of 0.55, 0.56, and 0.54,
respectively. Conversely, to achieve a TPR above 0.95, CAMPrints
maintains an FPR of approximately 0.5, while the baselines result in
an FPR of 1.0. While an FPR of 0.5 may appear high, it is acceptable
in an end-to-end setting (see §5.6), where we integrate CAMPrints
with Reverse Image Search. In this case, CAMPrints generates an
average of only 3.9 false positives per test image when searching
through an image database of over 210K images. This implies that
for every accurate detection of an image theft case, the user typically
reviews only five images, significantly alleviating user burden.

Figure 11 depicts the performance of CAMPrints when differ-
ent categories of operations are applied. Specifically, CAMPrints
achieves averageAUCof 0.92, 0.92, and 0.89 for𝑜𝑝𝑠𝑣𝑎𝑙𝑢𝑒 ,𝑜𝑝𝑠𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ,
and 𝑜𝑝𝑠𝑏𝑜𝑡ℎ , respectively. While baseline methods may produce
AUC similar to CAMPrints for 𝑜𝑝𝑠𝑣𝑎𝑙𝑢𝑒 , they fall notably behind
in the cases of 𝑜𝑝𝑠𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 and 𝑜𝑝𝑠𝑏𝑜𝑡ℎ . We observe substantial
margins of 0.36 and 0.33 on average for 𝑜𝑝𝑠𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 and 𝑜𝑝𝑠𝑏𝑜𝑡ℎ , re-
spectively. We attribute CAMPrints’s performance to its Embedding
Extractor (see §4.5). It captures global geometric patterns of camera
fingerprints even after extensive image manipulations – such as
rotation, cropping, and perspective transformations – which signif-
icantly changes the appearance of objects and scenes in the image.
In contrast, baseline methods, which rely on a cross-correlation-
based approach, focus primarily on local patterns – such as relative
distances between noise pixels – which can be easily altered by
𝑜𝑝𝑠𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 . Therefore, CAMPrints is robust against different image
processing operations.

5.3 Ablation Study
We evaluate the effectiveness of model design and training strategy.
We compare the following alternative design choices: (1)NPEOnly:
We use Noise Pattern Extractor to extract the noise patterns and
compute the PCE score. (2) NPE + EE (w/o Augment): We use
both Noise Pattern Extractor and Embedding Extractor to obtain the
embeddings of noise patterns and calculate the embedding distance.
The Embedding Extractor is trained using non-processed images
only. (3) NPE + EE (w/o Triplet): The Embedding Extractor is
trained using processed images without image triplets. We replace
the Triplet Loss with a Cross Entropy Loss during the training. (4)

Figure 11: Figure depictsCAMPrints’s performance compared
to baseline methods.

Figure 12: Figure depicts performance with different model
architectures and training strategies.

MWDCNN + EE: We combine the baseline method, MWDCNN,
and our trained Embedding Extractor. (5) NPE + EE (full pipeline):
The full pipeline of CAMPrints.
Results. Figure 12 illustrates CAMPrints’s performance under vari-
ous design configurations. The results reveal a consistent improve-
ment in AUC as additional training strategies are incorporated. No-
tably, CAMPrints’s full pipeline, NPE + EE (full pipeline), achieves
an AUC of 0.87, significantly surpassing NPE + EE (w/o Augment)
and NPE + EE (w/o Triplet), which attain AUC of 0.63 and 0.76,
respectively – representing substantial gains of 0.24 and 0.11. This
highlights the effectiveness of CAMPrints’s Image Generator mod-
ule (see §4.3) in helping the model recognize and compare camera
fingerprints before and after image processing operations. Further-
more, MWDCNN + EE achieves an AUC of 0.85, coming remarkably
close to the performance of the full CAMPrints pipeline, with a
marginal difference of only 0.02. This highlights the strength of
CAMPrints’s Embedding Extractor (see §4.5) in effectively capturing
the global geometric patterns inherent in camera fingerprints. Addi-
tionally, our Embedding Extractor demonstrates compatibility with
other approaches, including baseline methods, further showcasing
its versatility and integration potential.

5.4 Controlled Experiments
We evaluate the robustness of CAMPrints against different usage
conditions, as depicted in Figure 8(c). We adopt the same balanced
dataset in §5.2.
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Figure 13: Figure depicts the CAMPrints’s performance for
different numbers of image processing operations.

Figure 14: Figure depicts the CAMPrints’s performance for
different orders of image processing operations.

5.4.1 Number of Image Operations. We analyze how increasing
the number of distinct image processing operations affects CAM-
Prints’s performance. The combinations are selected from a repre-
sentative set of operations (see §3).
Results. Figure 13 illustrates the performance of both CAMPrints
and MWDCNN (Baseline). The results reveal a declining trend in
performance for both as the number increases. This is expected
as applying more operations alters and diminishes the camera fin-
gerprints. However, CAMPrints exhibits only a slight performance
decline from an average AUC of 0.93 to 0.87, whereas the baseline
undergoes a steep drop. This highlights the robustness ofCAMPrints
even under extensive image modifications.

5.4.2 Order of Image Operations. We analyze the effect of the order
of distinct operations. Using color effects (𝑜𝑝𝑐𝑜𝑙 ), barrel distortion
(𝑜𝑝𝑑𝑖𝑠𝑡 ), Gaussian noise addition (𝑜𝑝𝑛𝑜𝑖 ), we create six permutations
(e.g., 𝑜𝑝𝑐𝑜𝑙,𝑑𝑖𝑠𝑡,𝑛𝑜𝑖 and 𝑜𝑝𝑛𝑜𝑖,𝑑𝑖𝑠𝑡,𝑐𝑜𝑙 ).
Results. As depicted in Figure 14, the order of image processing
operations has minimal effect, with performance varying within a
small standard deviation of 0.03. However, we note thatCAMPrints’s
performance tends to decline when 𝑜𝑝𝑛𝑜𝑖 is applied before 𝑜𝑝𝑐𝑜𝑙 as
𝑜𝑝𝑐𝑜𝑙 tends to amplify the Gaussian noises introduced to the image.

5.4.3 Generalizability to Unseen Operations. Since CAMPrints em-
ploys a deep-learning approach, assessing its generalizability to
unseen operations is crucial, particularly when training involves
only four representative ones. We test CAMPrints on a diverse set of
operations excluded during training: (1) 𝑜𝑝𝑠𝑣𝑎𝑙𝑢𝑒 (unseen) includes
iPhone preset filters, Gaussian blurring, median blurring, sharpen-
ing, and vignette addition; (2) 𝑜𝑝𝑠𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 (unseen) includes flipping,
rotation, resizing, and perspective transformations; (3) 𝑜𝑝𝑠𝑏𝑜𝑡ℎ (un-
seen) combines operations from 𝑜𝑝𝑠𝑣𝑎𝑙𝑢𝑒 and 𝑜𝑝𝑠𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 .

Figure 15: Figure depicts CAMPrints’s performance for un-
seen image processing operations.

Figure 16: Figure depicts CAMPrints’s performance when
increasing the number of reference images.

Figure 17: Figure depicts CAMPrints’s performance when
images are edited by social media platforms and commercial
applications.

Results. As depicted in Figure 15, CAMPrints exhibits comparable
performance for both unseen and seen operations, with an average
AUC of 0.92 and 0.90, respectively. This suggests that the represen-
tative operations employed during the training (see §3) effectively
simulate the effects of a wide range of unseen ones, improving the
model’s generalizability.

5.4.4 Varying Number of Reference Images. In real-world scenar-
ios, photographers often own multiple images taken with the same
camera, which can serve as reference images. To evaluate CAM-
Prints’s performance under these conditions, we vary the number
of reference images, 𝑁𝑟𝑒 𝑓 .
Results. As illustrated in Figure 16, CAMPrints’s performance
improves from an AUC of 0.85 with a single reference image to
0.92 when 15 images are used. Notably, CAMPrints’s performance
plateaus at 0.92 when more than ten reference images are provided.
This indicates that CAMPrints effectively aggregates camera fin-
gerprint information from multiple reference images. Additional
images beyond ten offer little to no further benefit.
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5.5 Commercial Software
To evaluate the robustness of CAMPrints with real-world commer-
cial products, we perform image editing using smartphone appli-
cations, social media platforms, and photo-sharing websites, as
depicted in Figure 8(d).

5.5.1 Smartphone Applications. Smartphone applications are in-
creasingly popular for automatically editing images. We evaluate
CAMPrints using auto-adjust tools from various smartphone ap-
plications, including iPhone Photos, Android Gallery, Snapseed,
and Adobe Photoshop. These tools automatically adjust parameters
such as brightness, contrast, saturation, and sharpness to enhance
the overall image quality with minimal user input. Android Gallery
also applies appropriate cropping, rotation, or perspective transfor-
mations to improve the image’s visual appeal.
Results. As depicted in Figure 17, CAMPrints achieves average
AUC of 0.93, 0.92, 0.91, and 0.88 for Adobe Photoshop, Snapseed,
iPhone Photos, and Android Gallery, respectively. The lower per-
formance on Android Gallery is expected due to the combination
of image processing operations affecting both pixel values and lo-
cations, whereas the other applications primarily focus on pixel
value adjustments.

5.5.2 Social Media Platforms. We evaluate CAMPrints using im-
ages uploaded to social media platforms, including Instagram, Face-
book, and Tumblr, simulating the scenario where a screenshot of
a copyright-protected image is taken and shared on social media.
We randomly select 50 test images from our dataset and upload
screenshots of these images. We then download the images and
compare them with their corresponding reference images.
Results. Figure 17 depicts CAMPrints’s performance, with average
AUC of 0.89, 0.89, and 0.85 for Tumblr, Facebook, and Instagram,
respectively. We attribute the performance drop on Instagram to
its compression method, which reduces image details in the high-
frequency domain, particularly the noise pixels critical for identify-
ing camera fingerprints.

5.5.3 Photo-sharing Websites. We evaluate CAMPrints using im-
ages collected from Flickr, one of the most popular photo-sharing
platforms for professional and amateur photographers. The images
on Flickr are often heavily edited to reflect photographers’ aesthetic
preferences. We obtain the ground truth device information from
the EXIF metadata. In total, we gather over 200 images from 25
different devices, including the latest models like the iPhone 15 Pro
Max and Samsung Galaxy S23 Ultra. We create a balanced dataset
consisting of 50% image theft cases and 50% benign images, similar
to the methodology in §5.2. Notably, these devices are not part of
the training of CAMPrints.
Results. CAMPrints achieves an overall AUC of 0.91, which is
comparable to the performance on devices seen during training
(see §5.2). This demonstrates that CAMPrints can generalize effec-
tively to unseen devices.

5.6 End-to-End Experiments
We explore the potential of integrating CAMPrints into existing
copyright monitoring services, such as TinEye and Pixsy, which
primarily utilize Reverse Image Search to identify similar images
online using an image as input. Since Reverse Image Search APIs,

Figure 18: Figure depicts the performance of Reverse Image
Search, CAMPrints, and MWDCNN (Baseline) when search-
ing for the edited images from an image database with above
210K images.

like Google Image API, only query their own image databases,
we resort to an open-source tool [47], which has demonstrated
performance comparable to those of commercial APIs, to test our
image dataset.
CAMPrints’s Web Application. We develop a web application
to integrate CAMPrints with Reverse Image Search and compare
its performance with MWDCNN (Baseline). Figure 8(e) provides an
overview of CAMPrints’s web application. Specifically, the user first
uploads a set of reference images to CAMPrints. Then, CAMPrints
uses Reverse Image Search to scan a database of over 210K images.
CAMPrints selects only those images with similar content. For each
image, CAMPrints extracts and compares the camera fingerprint
with those of the reference images. Any images identified as image
theft are displayed to the user. For this experiment, we configure
the web application not to tolerate any false negative, prioritizing
the detection of as many image theft cases as possible, even at the
cost of potential false positives.
Data Preparation.We randomly select 16 devices from our test
dataset and 10 images per device. The unprocessed versions of these
images are used as reference images. To create the test images, we
apply random combinations of image processing operations to the
selected images.
Evaluation Metrics. Accuracy refers to the percentage of edited
images correctly identified in the search results. Number of False
Positives Per Image represents the number of benign images incor-
rectly included in the search results, divided by the total number of
reference images.
Results. Figure 18 illustrates the performance of Reverse Image
Search, CAMPrints, and MWDCNN (Baseline). As we configure the
web application to prioritize accuracy (i.e., no false negative), both
Reverse Image Search and CAMPrints achieve 100% accuracy, while
the baseline only reaches 33.1%. In contrast, CAMPrints averages 3.9
false positives per image, significantly fewer than 20.2 for Reverse
Image Search. This makes CAMPrints particularly effective in re-
ducing the user’s burden of reviewing search results. Additionally,
the average time taken per image is 1.38s for Reverse Image Search,
2.36s for CAMPrints, and 5.14s for the baseline. Thus, with only a
slight increase in processing time, incorporating CAMPrints into
existing copyright monitoring services can significantly enhance
usability while maintaining accuracy.
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6 Discussion
We now present important discussion points of CAMPrints.
Deployment Considerations. We envision that social media and
photo-sharing platforms could train and deploy CAMPrints using
public datasets to detect image theft by comparing a suspected im-
age with user-provided reference images. Furthermore, CAMPrints
could be integrated into existing copyright monitoring services to
enhance the detection accuracy of image theft and significantly
reduce false positives.
Complementary toOther ProtectionMethods.CAMPrints could
serve as a complementary solution to other copyright protection
methods, such as watermarking, digital signatures, and blockchain
technologies, because PRNU is inherently embedded in every photo
and requires no additional effort from the photographer.
Generalization to Other Transformations. As CAMPrints uti-
lizes data augmentation with a small representative set of image
processing operations to learn transformation-equivariant repre-
sentations of PRNU patterns, it generalizes well to a broad range of
geometric transformations (see §5). For instance, although flipping
and rotating an image alters the PRNU pattern to varying degrees,
CAMPrints can still match the PRNU patterns after these modifi-
cations. CAMPrints could be further enhanced by incorporating
additional or targeted transformations into the training set, though
this would come at the cost of increased training time. Addition-
ally, while adversarial attacks are not the primary focus of CAM-
Prints, they could impact its performance. Such attacks introduce
subtle perturbations that, though imperceptible to humans, can
significantly alter machine learning model outputs by exploiting
architectural vulnerabilities. Future work could investigate inte-
grating adversarial training techniques into CAMPrints to enhance
its resilience against such attacks.
Limitations. Since CAMPrints is designed to enhance the robust-
ness of PRNU extraction and matching, it is not intended for images
that lack PRNU, such as AI-generated or computer-rendered im-
ages. Additionally, CAMPrints is less effective on heavily modified
or regenerated images that deviate significantly from the original,
such as those created with generative AI to depict similar scenes.
However, this limitation is less critical as its primary use case re-
volves around scenarios where copyright violators often retain
distinctive features of the original to preserve its economic and
artistic value [15, 51, 70].
Extension and Impact of CAMPrints.We envision that CAM-
Prints could be further developed to assist forensic investigators
in identifying potential suspects involved in the distribution of
illegal or inappropriate online content [25]. By leveraging robust
PRNU-based image analysis like CAMPrints, investigators could
trace images back to their source devices, helping to establish a
chain of custody and providing critical evidence in forensic exami-
nations. This capability could be valuable in cases involving cyber
crimes and deepfake investigations. Additionally, CAMPrints could
contribute to the development and adoption of open standards
for verifying the authenticity and provenance of digital content.
Standards such as the Coalition for Content Provenance and Au-
thenticity (C2PA) [12] aim to provide a transparent framework for
tracking the origin and modifications of digital media. By integrat-
ing CAMPrints with such initiatives, platforms and law enforce-
ment agencies could enhance digital content verification processes,

mitigate misinformation, and improve trust in online media. This
extension could support broader efforts to combat digital manip-
ulation and strengthen content authentication in an increasingly
AI-driven media landscape.

7 Related Work
We present related works of CAMPrints.
Sensor Pattern Noise-Based Approaches. A line of research
explores the unique sensor pattern noise generated due to minor
manufacturing imperfections in image sensors. These works rely
on signal processing techniques like wavelet-based methods to an-
alyze the noise patterns [1, 25, 32, 35–39], or deep learning-based
approaches [11, 17, 45, 52, 60, 79] (e.g., convolutional neural net-
works and other architectures) to denoise images. Furthermore,
another family of works [53, 74–76] focuses on efficient fingerprint
matching and image retrieval in large databases. Some studies in-
vestigate the robustness of PRNU against image operations like
cropping, resizing, and compression [8, 33, 34, 46, 50, 54, 78], but
lack a practical solution, like CAMPrints, capable of handling a wide
variety of image operations.
Multi-Fingerprint Approaches. Beyond sensor noise patterns,
another line of research [24] explores using a combination of hard-
ware and software-based camera fingerprints, such as Color Filter
Array (CFA) patterns, Image Signal Processing (ISP) artifacts, and
other distinctive camera-specific characteristics to enhance identi-
fication accuracy.
Commercial Solutions. Commercial solutions involve Reverse
Image Search techniques [2, 28, 29, 65, 66], which uses deep learning
to find visually similar images. Forensic tools like Amped Authen-
ticate [27] and MOBILedit Forensic [55] implement various algo-
rithms to detect and analyze camera-specific fingerprints. Other
image forensic tools [49] analyze metadata embedded in digital
images to uncover information about their origin, authenticity, and
potential manipulations.

8 Conclusion
we present CAMPrints, a robust system for detecting image theft.
CAMPrints verifies whether edited images found online contain
camera fingerprints matching those of user-provided reference
images. The system overcomes the challenges of identifying images
altered by diverse image processing operations. We select a small
yet representative set of operations by categorizing them based on
their impact on pixel values and locations. A deep-learning model
is trained to recognize and compare camera noise patterns pre-
and post-editing. We conduct real-world evaluations involving 36
cameras across eight make-and-model combinations, along with
over 40 operations applied to more than 4,000 images. CAMPrints
achieves an average AUC of 0.92, significantly outperforming the
state-of-the-art methods by up to 1.8 times.
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