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A Surge in Online Image Theft

e Unauthorized use of copyrighted photos and images
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Scenario: Combat Image Theft
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Scenario: Combat Image Theft

“Physical Token”
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Search from image database
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How to help Charlie
combat image theft?



Utilize Camera “Fingerprints”

e Unique hardware traces due to manufacturing imperfections
e I|dentify the specific camera that took a particular photo
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PRNU: The Most Distinctive Hardware Trace

e Photo Response Non-Uniformity (PRNU) captures differences in
electrical conductivities of photodiodes in image sensor
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PRNU: The Most Distinctive Hardware Trace

e PRNU is a noise pattern residing in images
e Same sensor produces similar patterns regardless of image editing
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Related Work: General Pipeline of Using PRNU

e Related work focuses on extracting and matching noise patterns
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Related Work: Limitations

e Extremely sensitive to geometric transformations and distortions
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Related Work: Limitations

e Extremely sensitive to geometric transformations and distortions

Examples of noise patterns
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Can we detect image theft even when
attackers could freely edit images?
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Threat Model

o Attacker’s goal:
o Alter the image to avoid detection of image theft
o Preserve image content and quality for economic value

o Attacker’s capabilities:
o Use image editing software and test against detection methods
o No transformations that completely alter or regenerate the image
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Our Work: CAMPrints

e Detect online image theft using camera “fingerprints” (i.e., PRNU-
induced noise pattern) as physical proof of ownership
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Our Work: CAMPrints

e Detect online image theft using camera “fingerprints” (i.e., PRNU-
induced noise pattern) as physical proof of ownership '
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Core Idea of CAMPrints

e A noise pattern should be recognizable even after transformations
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Core Idea of CAMPrints

e A noise pattern should be recognizable even after transformations

Representation Learning
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transformations (f,)
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Challenge #1: Image Editing Operations

e Freely edit images as long as image content and quality is

preserved (i.e., within a quality budget)

e A wide range of image editing types and combinations
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Examples of image editing
operations on iOS
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Challenge #2: Multiple Sources of Noises

e Extraction of noise pattern is imperfect
e Contains a mixture of content noises and sensor noises
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Design of CAMPrints

For Challenge #1 For Challenge #2
Training Phase Image Editing Operations Multiple Sources of Noises
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Design of CAMPrints

For Challenge #1
Training Phase Image Editing Operations

Data "Noise Pattern\ [ Embedding)
Extractor Extractor

T il
\ ’

Input

Public Dataset of Images and
Corresponding Camera Labels

om - - — -
— o o o e e




Data Processing: Representative Image Editing

e We select a small yet representative set of image editing
e C(Categorize the effects of image editing
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Data Processing: Representative Image Editing

e Quantify pixel value changes using histograms
e Quantify pixel location shifts using motion vectors
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Data Processing: Representative Image Editing

e 2D feature space simulating both effect (1) pixel value changes
and (2) pixel location shifts
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Data Processing: Representative Image Editing

e Select largest spanning circle as the representative operation

e Continue selecting to fill up the uncovered regions
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Data Processing: Representative Image Editing

e Select largest spanning circle as the representative operation

e Continue selecting to fill up the uncovered regions

»™ Effect (1)
4

Color Histogram
Difference

Feature Space
& to characterize image editing

(5

F

NNy
MNNNNNS = r
NNNNNN N~ - S
ANNNNNN S - s
N T T tf
Fbb b Vb
I <~ vN N
R Al A
IS RN AN
VO Dbl N

VYOO S QN
PSP N

Motion Vector

4

Effect (2) =7

25



Data Processing: Representative Image Editing

e Select largest spanning circle as the representative operation

e Continue selecting to fill up the uncovered regions
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Data Processing: Representative Image Editing

e Select largest spanning circle as the representative operation

e Continue selecting to fill up the uncovered regions
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Data Processing: Representative Image Editing

e Select largest spanning circle as the representative operation

e Continue selecting to fill up the uncovered regions

Set (A, B, E, F) is one of the
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Design of CAMPrints

Training Phase
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Design of CAMPrints

For Challenge #2

Training Phase Multiple Sources of Noises
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Embedding Extractor

Goal: Encode noise pattern into latent representation to
1. Filter out content-induced noises
2. Maximize similarity between features from the same device
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Embedding Extractor

Goal: Encode noise pattern into latent representation to
Filter out content-induced noises

1.
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Embedding Extractor

Goal: Encode noise pattern into latent representation to
1. Filter out content-induced noises

2. Maximize similarity between features originating from same

device despite image editing
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Experiment setup

e We ensure at least three different instances per make-and-model
to evaluate the instance-level accuracy

5 brands
8 make-and-model

36 devices

SAMSUNG

e We train the model with only four operations and test on 40 other
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Summary of evaluation results

0 —————— ——— )

| ® Demonstrates overall average |} ® Generalizes to unseen image

i | | .
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- i
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e Remains ZJ.;;;&QZIJ E)Es-ti-n-g-- ® Generalizes across commercial
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b (. ) #*O0 @ 9B flickr

Extraction
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and order of image operations compared to Reverse Image Search

Google
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Overall performance

e CAMPrints significantly outperforms baselines by up to 1.8x in
terms of AUC, especially for geometric transformations
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Overall performance

e CAMPrints significantly outperforms baselines by up to 1.8x in
terms of AUC, especially for geometric transformations
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Overall performance

e CAMPrints significantly outperforms baselines by up to 1.8x in
terms of AUC, especially for geometric transformations
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Overall performance

e CAMPrints significantly outperforms baselines by up to 1.8x in
terms of AUC, especially for geometric transformations
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Overall performance

e CAMPrints significantly outperforms baselines by up to 1.8x in
terms of AUC, especially for geometric transformations
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Discussion

Deployment Consideration

Integration into

e Social media and photo
sharing platforms

e Copyright monitoring services

Find and Fight
image theft

/"‘

' Pixsy )

Pixsy, an example copyright
montitoring service

Extension of CAMPrints

Co-existence of physical and digital
“tokens” (e.g., invisible watermarks)

CAMPrints | v

Open standards for authenticity
and provenance &2) c2

= PA

Online media forensics
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Conclusion

e Detect online image theft using camera “fingerprints” (i.e., PRNU-
induced noise pattern) as physical evidence of ownership
e Spur future research in authenticity and provenance in digital content

flickr Coarse-Grained Fine-Grained

Detection Detection
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Susptaous Reference
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National University of Singapore
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in National University of Singapore (NUS). My supervisors are Prof. Jun Han in Yonsei University
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