
B.Comp. Dissertation

A Real-time Caustics and Global Illumination
Rendering Framework with RTX Technology

By

Sun Bangjie

Department of Computer Science

School of Computing

National University of Singapore

2019/2020

B.Comp. Dissertation

A Real-time Caustics and Global Illumination
Rendering Framework with RTX Technology

By

Sun Bangjie

Department of Computer Science

School of Computing

National University of Singapore

2019/2020

Project No: H113650

Supervisor:
Dr. Low Kok Lim

Evaluators:
Dr. Low Kok Lim
Dr. Huang Zhiyong

Abstract

This dissertation presents a robust and noise-free rendering framework capable of
generating caustics and global illumination in real time. It realizes path integral
formulation of light transport with Microsoft’s DirectX Raytracing (DXR) application
programming interfaces (APIs) and NVIDIA GeForce RTX 20-series GPUs. The
NVIDIA RTX technology, by building ray-tracing cores in the GPU hardware,
optimizes and accelerates the testing of intersections between rays and geometries
such as triangle patches. It, in turn, greatly improves the speed of techniques like
path-tracing, bidirectional path-tracing and photon mapping, which were mostly
used in offline rendering and needed hours or even days to render photo-realistic
images. However, in order to keep rendering within the real-time budget, the
total number of rays spawn is still limited. Due to such limitation in sampling,
the resultant image will contain an observable amount of noise, which can be
visually unsatisfying. It then requires denoising techniques to remove the noise and
reconstruct the image. We can see the application of path-tracing and A-SVGF in
games such as Quake II RTX, where good image quality and real-time performance
can be achieved. However, since the denoising quality is highly dependent on the
noise level of the source image, we see opportunities where low-variance rendering
techniques such as bidirectional path-tracing can be adopted to further reduce the
noise in the source image. We conduct several experiments to compare image quality
and rendering speed of various scenes, and perform algorithmic analysis on the
rendering techniques.

Keywords: Computer graphics, Caustics, Global illumination, Path tracing, Photon
mapping, Denoising, DirectX Raytracing (DXR), RTX GPUs.

Implementation Software and Hardware: Microsoft Visual C++ 2017 (v141),
Windows SDK Version 10.0.17763.0, Intel Core i7-9700K CPU @ 3.60GHz, ZOTAC
Gaming GeForce RTX 2070 Super 8GB RAM.

i

Acknowledgments

The success and final outcome of this dissertation required a lot of guidance and
assistance from many people and I am extremely privileged to have got this all
along the completion of my dissertation. All that I have done is only due to such
supervision and assistance and I would not forget to thank them. I respect and
thank Dr. Low Kok Lim for providing me such a great opportunity to work on the
topic of real-time rendering and giving me all support and guidance which made
me complete the project duly. I am extremely thankful to him for providing such a
nice support and guidance. I am thankful to and fortunate enough to get constant
encouragement, support and guidance from all teaching staffs of the Department of
Computer Science in NUS, which helped me in successfully completing the project
work. I would also like to extend my sincere esteems to all my families and friends.

ii

Contents

Abstract i

Acknowledgments ii

List of Figures vi

1 Introduction 1
1.1 The problems in current production work 2
1.2 High-level structure of rendering framework 4
1.3 Summary of original contributions 5
1.4 Reproducibility of work . 5
1.5 Thesis synopsis . 5

2 Literature Review 6
2.1 Light patterns . 6
2.2 Light transport mathematical framework 7

2.2.1 Radiometry . 7
2.2.2 Rendering equation . 8

2.3 Rendering techniques . 9
2.3.1 Path-tracing . 10
2.3.2 Forward ray-tracing . 10
2.3.3 Hybrid ray-tracing . 11
2.3.4 Photon mapping . 12

2.4 Denoising techniques . 12
2.4.1 Sampling . 13
2.4.2 Signal processing . 13
2.4.3 Spatio-temporal . 13

iii

2.5 Summary . 14

3 Path Integral Formulation of Light Transport 15
3.1 Path integral mathematical framework 15

3.1.1 Three point form . 15
3.1.2 The Neumann Series Expansion 16
3.1.3 Monte Carlo estimation . 17

3.2 Bidirectional path-tracing . 18
3.2.1 Sampling the paths . 18
3.2.2 Contribution of a path . 19
3.2.3 Weight of a path . 20

3.3 Multiple importance sampling . 21
3.4 Summary . 22

4 Implementation Details 23
4.1 Overview of shaders in DXR pipeline 23
4.2 Implementation of bidirectional path-tracing 25

4.2.1 Overview . 25
4.2.2 G-buffer . 26
4.2.3 Path construction . 26
4.2.4 Path integration . 30
4.2.5 Multiple importance sampling 30

5 Results 34
5.1 Image quality . 34

5.1.1 Output images without denoising 34
5.1.2 Images with temporal accumulation 36
5.1.3 Denoising by BMFR . 38

5.2 Speed and memory complexity . 39
5.2.1 Speed . 40
5.2.2 Memory . 42

5.3 Summary . 42

iv

6 Discussion 43
6.1 Possible improvement in our implementation 43
6.2 Comparison with other rendering techniques 44

7 Future Work and Conclusion 46
7.1 Future research directions . 46
7.2 Conclusion . 46

Bibliography 47

A Image Gallery 50

v

List of Figures

1.1 Sponza rendered with 1 sample per pixel 3
1.2 Sponza denoised by NVIDIA’ Recurrent Autoencoder [5] 3
1.3 High-level diagram of rendering framework 4

2.1 Caustics model . 6
2.2 Color bleeding . 6

4.1 High-level diagram of DXR pipeline. Fixed stages are in green and
programmable shaders are in blue. Modified from [29] 23

4.2 Overview of implementation of bidirectional path tracing 25

5.1 Bidirectional path-tracing: Cornell Box with two specular spheres . . . 35
5.2 Standard path-tracing: Cornell Box with two specular spheres 35
5.3 Bidirectional path-tracing: Cornell Box with one specular sphere and

back wall . 36
5.4 Standard path-tracing: Cornell Box with one specular sphere and back wall 36
5.5 Bidirectional path-tracing: Cornell Box with reflective water surface . . 37
5.6 Standard path-tracing: Cornell Box with reflective water surface 37
5.7 Bidirectional path-tracing with 10 frames accumulated: Cornell Box with

one specular sphere and back wall . 38
5.8 Standard path-tracing with 40 frames accumulated: Cornell Box with

one specular sphere and back wall . 38
5.9 Bidirectional path-tracing with 10 frames accumulated: Cornell Box with

reflective water surface . 39
5.10 Standard path-tracing with 40 frames accumulated: Cornell Box with

reflective water surface . 39

vi

5.11 Cornell Box with two specular spheres: denoised (left half) and raw (right
half) . 40

5.12 Cornell Box with one specular sphere and back wall: denoised (left half)
and raw (right half) . 40

5.13 Cornell Box with reflective water surface: denoised (left half) and raw
(right half) . 41

A.1 Arcade . 50
A.2 Bedroom . 51
A.3 Conference . 51
A.4 Pink room . 52
A.5 Salle De Bain . 52
A.6 Sponza . 53

vii

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

The goal of this dissertation is to build a rendering framework for generating
caustics and global illumination in real time and noise-free. To meet our goal, we
concentrate on the newly introduced hardware ray-tracing acceleration technology
in GPU, empowered by NVIDIA GeForce RTX 20-series, as well as a robust Monte
Carlo method for light transport simulation developed by Dr. Eric Veach [27]. By
a real-time rendering framework, we mean one that produces images within 30
milliseconds, which correspond to more than 30 frames per second. We also aim
to reduce the noise level in the output to yield images that are physically plausible
and visually pleasing.

The NVIDIA RTX technology has created opportunities for real-time rendering
of caustics and global illumination in games and films. By building ray-tracing
cores in the GPU hardware, it optimizes and accelerates the testing of intersections
between rays and geometries such as triangle patches. It, in turn, greatly improves
the speed of techniques like path-tracing, bidirectional path-tracing and photon
mapping, which were mostly used in offline rendering and needed hours or even
days to render photo-realistic images. However, in order to keep rendering within
the real-time budget (above 30 frames per second), the total number of rays spawn
is still limited. One good indicator would be the number of rays generated per
pixel, and the other would be the total number of rays per frame. Due to such
limitation in sampling, the resultant image will contain an observable amount of
noise, which can be visually unsatisfying. It then requires denoising techniques to
remove the noise and reconstruct the image. Current denoising techniques include
adaptive spatiotemporal variance-guided filtering (A-SVGF) [6], NVIDIA OptiX

1

CHAPTER 1. INTRODUCTION

AI-Accelerated Denoiser [5] and Blockwise Multi-Order Feature Regression [17]. We
can see the application of path-tracing and A-SVGF in games such as Quake II RTX,
where good image quality and real-time performance can be achieved. However,
since the denoising quality is highly dependent on the noise level of the source image,
we see opportunities where low-variance rendering techniques such as bidirectional
path-tracing can be adopted to further reduce the noise in the source image.

In our research, we seek to develop a rendering framework that realizes path
integral formulation of light transport [27] with Microsoft’s DirectX Raytracing
(DXR) application programming interfaces (APIs) and NVIDIA GeForce RTX
20-series GPUs. We conduct several experiments to compare image quality and
rendering speed of various scenes, and perform algorithmic analysis on the rendering
techniques adopted. In the following sections, we start with an overview of the
rendering problem in the current production work and why it is important. We
also present the high-level structure of our rendering framework. After this brief
introduction, we summarize the original contributions of this dissertation, and
outline its organization.

1.1 The problems in current production work
Currently, most games adopt rasterization and conventional ray-tracing rendering

techniques, which are fast given the advancement of GPUs nowadays. However,
these methods are unable to produce global lighting effects such as caustics and
color bleeding. Approximation of such effects is often done in the post processing of
rendered images, and is not physically plausible. In addition, post-processing often
requires multiple rendering passes where only one effect is handled in each pass. It
adds complexity to the rendering pipeline.

To achieve global illumination in one go, the most popular algorithm used for
production work is path-tracing, which traces rays from the camera into the scene,
and bounces the rays based on the hit points’ material models. The algorithm
has low complexity in both implementation and rendering, but the main problem
is that it produces highly noisy images at low sample counts, and it converges to
true colors very slowly. As shown in Figure 1.1, the Sponza scene [18] is rendered
by the path-tracing algorithm with 1 sample per pixel. It is difficult to recognize

2

CHAPTER 1. INTRODUCTION

features of the building, such as flags. Thus, in games like Quake II RTX, a denoising
pass is needed to remove random noises by blurring the image. Unfortunately, the
performance of a denoiser is highly dependent on the noise level of the source image.
As shown in Figure 1.2, even after we apply NVIDIA’s Recurrent Autoencoder to
denoise the image, the output image is still visually unsatisfying.

Figure 1.1: Sponza rendered with 1 sample per pixel

Figure 1.2: Sponza denoised by NVIDIA’ Recurrent Autoencoder [5]

Despite a great deal of research in denoising techniques, it is important to reduce
the noise produced by the rendering algorithm itself. In addition, since the growth
in modern GPUs will allow an increasing number of samples per pixel in ray-tracing

3

CHAPTER 1. INTRODUCTION

related algorithms, it is essential to improve the noise reduction rate per unit increase
in sample counts.

The importance of producing physically correct caustics and global illumination
in real time is not only seen in games, but also applicable to film industries, and
virtual reality. As film industries also aim to produce images as real as possible, the
reduction in the rendering time will help improve the efficiency film production and
certainly saving costs. Simulating objects and environments as closely as possible to
our real world in virtual reality can enhance the immersive experience of users.

1.2 High-level structure of rendering framework
In this section, we will present the rendering framework making use of the path

integral formulation, which serves as a foundation for bidirectional path-tracing and
metropolis light transport methods [27]. The implementation of the framework is
built on top of the Falcor rendering framework [3] developed by the NVIDIA team to
avoid repetitive work needed for computer graphics researchers to start from scratch.
The Falcor framework provides an abstraction of low-level DXR APIs, loading of
scene geometries, as well as graphical user interfaces (GUIs).

Figure 1.3: High-level diagram of rendering framework

With reference to Figure 1.3, our rendering framework contains three rendering
passes: G-buffer, path integral formulation and denoising. G-buffer produces and

4

CHAPTER 1. INTRODUCTION

stores geometry and material information for all pixels. Path integral formulation
consists of path construction, path integration and multiple importance sampling,
which can be done in one rendering pass. The denoising pass consists of temporal
accumulation and the Blockwise Multi-Order Feature Regression (BMFR) [17].

1.3 Summary of original contributions
Our contributions fall into two parts: a new path integral formulation rendering

pass implemented with the latest RTX technology, and a new rendering framework
that can produce noise-free caustics and global illumination in real time.

1.4 Reproducibility of work
The implementation of our rendering framework is available at Github repository

at https://github.com/SunBangjie/FYP-BidirectionalPathTracer.

1.5 Thesis synopsis
The rest of this dissertation is organized as follows. In Chapter 2, we conduct

a literature review and explain background knowledge and techniques. Chapter 3
explains the mathematical derivation of the path integral formulation of light trans-
port in details. Chapter 4 provides essential information on RTX architecture and
usage of DXR APIs, and presents implementation details of the rendering framework.
Chapter 5 compare and analyze the results of our framework with reference images
rendered with standard path-tracing. Chapter 6 discusses advantages and limitations
of our framework. We conclude the entire dissertation and discuss further directions
for future research in Chapter 7.

5

https://github.com/SunBangjie/FYP-BidirectionalPathTracer

CHAPTER 2. LITERATURE REVIEW

Chapter 2

Literature Review

In this chapter, we will describe relevant terms and definitions, introduce the
background knowledge involved and review related work published.

2.1 Light patterns
Caustics are often seen when light rays are reflected or refracted by some optical

medium and converge to a single point on a diffuse surface to produce area with
above-average brightness [9], with reference to Figure 2.1. Examples of caustics can
be easily produced by sunlight shinning on surface of water, or through glasses.

Figure 2.1: Caustics model Figure 2.2: Color bleeding

Global illumination is a system that models how light is bounced off of surfaces
onto other surfaces (indirect light) rather than being limited to just the light that hits
a surface directly from a light source (direct light) [26]. For example, in Figure 2.2,

6

CHAPTER 2. LITERATURE REVIEW

green color of the wall is cast onto the sphere on the right side of the image. This
color-bleeding effect comes from indirect lighting because the green light is not cast
directly from a light but rather is the result of a white light being cast onto the
green wall which is then bleeding onto the nearby sphere.

2.2 Light transport mathematical framework
In this section, we describe basic terms and definitions used in light transport

problems. Since in computer graphics, we simulate how light behaves in the real
world, it is important to understand radiometry which describes the units of light.
We also derive some mathematical equations to describe how light is transported
from a light source to a view point.

2.2.1 Radiometry

In a light transport model, we can assume that the light moves in straight lines
at infinite speed. This is the essential assumption for most ray-tracing algorithms,
and even with this assumption, we are still able to simulate almost all the lighting
effects visible to human eyes.

2.2.1.1 Flux

Flux, often denoted as φ, is the flow of energy measured in Watt. It is the
amount of energy that passes through an area in a given time. We can write flux as:

φ = dQ

dt

where dQ is a unit of energy and dt is a unit of time. Since flux is independent of
time, it is the basic unit of many light transport algorithms.

2.2.1.2 Irradiance and radiosity

The irradiance E is defined as the amount of flux that is arriving at per unit
of surface area dA. On the other hand, the radiosity B is the amount of flux that
is leaving per unit of surface area. Radiosity is also known as radiant exitance M .
These can be written as:

E = dφ

dA
B = M = dφ

dA

7

CHAPTER 2. LITERATURE REVIEW

2.2.1.3 Radiant intensity

The radiant flux per unit solid angle, dω is measured by the term intensity I. It
can be written as:

I = dφ

dω

2.2.1.4 Radiance

Radiance is the primary way of describing the light in many rendering techniques
and algorithms, since radiance is the value that mostly resembles color and it does
not change over distance. We can say that radiance equals the amount of radiant
flux found in a single light ray. To evaluate that, we need to find the amount of flux
that exits or enters a single point on a surface, from or in a single direction. This is
equal to the flux per area per solid angle, which can be written as:

L(x, ω) = d2φ

dω dA |ω ·Nx|

where L(x, ω) is the radiance of point x in the direction ω and Nx is the normal
vector at point x. We can then find the flux by integrating over the surface area A
in all directions Ω within the hemisphere above the point x:

φ =
∫
x∈A

∫
ω∈Ω

L(x, ω) |ω ·Nx| dω dx

2.2.2 Rendering equation

The rendering equation, proposed by James Kajiya [15] in 1986, is based on
the physics of light and describes the law of conservation of energy during the
flow of light through the rendered scene. The rendering equation has served as
a fundamental basis for all algorithms simulating global illumination. Equation 1
describes the amount of light reflected from the surface point x in the direction ωo,
which can be computed as the emitted radiance plus the reflected radiance:

Lo(x, ωo) = Le(x, ωo) + Lr(x, ωo) (1)

Le(x, ωo) is the emitted radiance from point x in the direction ωo. Only light sources
and emissive materials can have positive emitted radiance, and other surfaces will
have zero. Lr(x, ωo) is the radiance reflected by the point x in the direction ωo, from

8

CHAPTER 2. LITERATURE REVIEW

all incoming lights. We can represent the incoming radiance for a single direction ωi
as Li(x, ωi).

To find out how much incoming radiance is reflected, we can multiply Li by
a factor called Bidirectional Reflectance Distribution Function (BRDF). It is a
function fr that defines the reflecting behavior of a surface from arbitrary incidences.
For any light ray striking the surface at a specified angle of incidence, the BRDF
gives the ratio between the radiance reflected in direction ωo and the irradiance
incident from direction ωi. The BRDF is decribed by Equation 2 below:

fr(x, ωi → ωo) ≡
Lr(x, ωo)
Ei(x, ωi)

≡ Lr(x, ωo)
Li(x, ωi) cos(θi)dωi

(2)

where Ei denotes the irradiance (the amount of flux hitting the surface) and Lr is
the radiance (the differential flux density emitted from the surface).

Thus, by integrating over all directions on the hemisphere above the point x, we
can compute the reflected emittance as shown in Equation 3. The cos(θi) can be
calculated using the dot product of wi and normal vector Nx on point x according
to the geometry definition of dot product.

Lr(x, ωo) =
∫
ωi∈Ω

fr(x, ωi → ωo)Li(x, ωi)|ωi ·Nx|dωi (3)

Therefore, after combining Equation 1 and Equation 3, we can get the rendering
equation:

Lo(x, ωo) = Le(x, ωo) +
∫
ωi∈Ω

fr(x, ωi → ωo)Lo(x′,−ωi)|ωi ·Nx|dωi (4)

It is important to notice that we can replace Lr(x, ωo) with Lo(x′,−ωi) where x′

is the previous surface point that the light leaves before entering point x, and the
outgoing direction ωo at point x′ is the opposite of the incoming direction ωi at point
x. Since both radiance terms are now Lo, we can drop the subscript for convenience.

2.3 Rendering techniques
There are numerous rendering techniques that attempt to simulate caustics and

global illumination in graphics engines like Unity and Maya, as well as a lot of
games such as Battlefield V. Some of them adopts the full ray-tracing approach,
namely path-tracing or photon mapping, and some of them use a hybrid approach

9

CHAPTER 2. LITERATURE REVIEW

that combines rasterization, also known as scanline rendering, and local ray-tracing
to approximate lighting effects. In this section, we will review and evaluate these
algorithms, and point out their advantages and limitations.

2.3.1 Path-tracing

The path-tracing approach was introduced by James Kajyiya [15] in 1986 together
with the rendering equation, which quickly became a benchmark in computer
graphics. Path-tracing attempts to trace the light paths from the camera into the
scene, bouncing off both specular and diffuse surfaces until light rays intersect any
light source or out of the scene. The main difference between path-tracing and
conventional ray-tracing is that, ray-tracing samples lights directly when a ray hits
a diffuse surface and stops further tracing. On the other hand, in path-tracing, the
ray’s new direction is sampled randomly among all possible directions within the
hemisphere over the surface point, using the BRDF.

The path-tracing algorithm is unbiased as it does not introduce any systematic
error, or bias, into the radiance approximation. It can produce reference image to
compare against other rendering techniques. However, when the number of samples
is insufficient, it generally causes highly noisy output image. Due to the fact that
the probability of an intersection between a ray and a light source is very low, most
traced paths will not contribute to the final image, causing high computational waste.
It also cannot consistently handle caustics generated from a point light source, as
it is highly unlikely to randomly generate the particular path that directly reflects
into the point.

2.3.2 Forward ray-tracing

The path-tracing approach is one the of backward ray-tracing methods. On the
other hand, we also have forward ray-tracing methods that trace the light particles
(photons) from the light source to the surfaces and bounces off. Although forward
ray-tracing can most accurately determine the color of each surface point, it is highly
inefficient. This is because many rays from the light source never come through the
view plane and into the eye. Tracking every light ray from the light source down
means that many rays will go to waste because they never contribute to the final

10

CHAPTER 2. LITERATURE REVIEW

image as seen from the eye. However, the main advantage of this approach is that it
can generate caustics much more easily than path-tracing because every path that
contributes to the image is originated from the light source.

2.3.3 Hybrid ray-tracing

Since both forward ray-tracing and backward ray-tracing have their drawbacks,
we can combine them to form hybrid solutions. After a certain level of forward ray-
tracing is performed, the algorithm records the data, and then goes on to perform
backward ray-tracing. The final coloring of the scene takes both the backward
ray-tracing and the forward ray-tracing calculations into account. We will discuss
some of the major algorithms that adopt this hybrid approach in the following
subsections.

2.3.3.1 Adaptive radiosity textures bidirectional ray-tracing

The bidirectional ray-tracing method making use of adaptive radiosity textures
[11] consists of two rendering passes. The first pass emits rays from light sources into
the scene. Whenever one of the rays hits a diffuse surface, its radiance is reduced
according to the reflection and the energy difference is saved in an illumination
map at intersections. The second pass carries out conventional ray-tracing, with
the illumination maps providing additional information for the calculation of the
surfaces’ illumination. This method has limitation in the accuracy in the radiance
approximation, and it is costly in terms of memory usage to store texture maps.

2.3.3.2 Bidirectional path-tracing

Bidirectional path-tracing is another hybrid ray-tracing solution. It first pursues
the light rays through the scene, and stores the information of every hit point in
the memory to construct a light path. Similarly, it also traces rays from the eye,
and store all the hit points to construct an eye path. It then connects all the points
from two paths and test the visibility between any two points. This technique can
converge much faster than unidirectional path-tracing methods to the physically
correct radiance as the number of samples increases, and hence it can produce less
noise. However, the main problem of this algorithm is that it has relatively high
time and space complexity.

11

CHAPTER 2. LITERATURE REVIEW

In general, hybrid solutions will compromise speed and accuracy, but can produce
images with relatively low noise compared to the path-tracing or forward ray-tracing
approach.

2.3.4 Photon mapping

H.W. Jensen et al. [12] introduced the photon mapping method which can
generate caustics and global illumination in two passes. The first pass focuses on
the construction of photon maps, and the second pass render the scene by retrieving
information stored in the photon maps. The main problem of this method is the
difficulty in managing the huge mass of gathered information. The key to an
acceptable computing time lies in the choice of the right data structure. The best
structure to store a photon map is a balanced k-dimensional tree, which enables fast
neighborhood searches, and is compact and efficient. One photon can be stored in
only 20 bytes. However, since a large number of photons emitted from light sources
are needed to produce visually pleasing images, the memory consumption might still
be a problem.

Further work to improve photon mapping was seen in progressive photon map-
ping [25], where the photon tracing pass results in an increasingly accurate global
illumination solution that can be visualized in order to provide progressive feedback.
Progressive photon mapping uses a new radiance estimate that converges to the
correct radiance value as more photons are used. It is not necessary to store the full
photon map, and it is possible to compute a global illumination solution with any
desired accuracy using a limited amount of memory. Stochastic progressive photon
mapping [24] then extends the progressive photon mapping for simulating global
illumination with effects such as depth-of-field, motion blur, and glossy reflections.

2.4 Denoising techniques
The rendering techniques mentioned in the previous section were mostly used for

offline rendering in film industries before the rise of RTX technology. It may take
hours or days to render an image at that time. Even with the latest RTX GPUs,
we still have limitations in the number of rays that can be generated for a frame
in order to keep rendering within the real-time budget. This, in turn, leads to a

12

CHAPTER 2. LITERATURE REVIEW

noisy image which requires a denoising stage to remove the noise and reconstruct
the image. In this section, we will discuss several types of denoising methods.

2.4.1 Sampling

Many different sampling methods were introduced to reduce noise in the final
image rendered by path-tracing. The noise comes from stochastic sampling with
biased noise generated by quasi-random sequences, weighing different rays outputs
with multiple importance sampling (MIS) and next event estimation (NEE) [27].
A great deal of research handles denoising by improving the sampling method.
Recently, the use of low discrepancy sampling [13] and tillable blue noise [4] has
been used by Unity Technologies, Marmoset Toolbag and NVIDIA in real-time ray
tracers. Christopher Kulla et al. [7] adopt importance sampling techniques to allow
efficient calculation of direct and indirect lighting from arbitrary light sources in
both homogeneous and heterogeneous participating media. Konstantin Shkurko et
al. [22] introduce a new motion blur computation method for path-tracing that
provides an analytical approximation of motion blurred visibility per ray. Rather
than relying on timestamped rays and Monte Carlo sampling to resolve the motion
blur, they associate a time interval with rays and directly evaluate when and where
each ray intersects with animated object faces.

2.4.2 Signal processing

A conventional denoising approach would be signal processing. Such techniques,
including Gaussian, Median [16], Bilateral, À-Trous [8], and Guided [14] filters, have
been used to average out and blend regions with low variance. In particular, guided
filters driven by feature buffers such as G-Buffer attachments have seen much success.
Machine learning algorithms such as those employed by Intel’s Open Image Denoise
(OIDN), NVIDIA’s Denoising Autoencoder [5] were used for offline renders, with
NVIDIA [20] attempting to use trained neural networks in real-time.

2.4.3 Spatio-temporal

Spatial-temporal techniques have seen a resurgence in new literature. Examples
include Spatio-Temporal Filter [19], the Spatio-Temporal Variance Guided Filter

13

CHAPTER 2. LITERATURE REVIEW

(SVGF) [21], Spatial Denoising [1], Adaptive SVGF (A-SVGF) [6], Blockwise Multi-
Order Feature Regression (BMFR) [17], and Temporally Dense Ray Tracing [2].

2.5 Summary
To build an unbiased rendering framework that approximates radiance of scene

surfaces as accurately as possible, we have to manage the trade-offs between speed,
memory consumption and noise level in the output image, given the limitations in
the computational resources. Preliminary experiments were conducted to test the
performance of RTX GPUs and the optimal number of rays that can be spawn for a
frame within the real-time budget. We believe that a hybrid ray-tracing approach
is a balanced one that can produce unbiased and accurate images with relatively
low variance. Then we can apply light-weight spatio-termporal denoising techniques
such as BMFR to handle the noise.

14

CHAPTER 3. PATH INTEGRAL FORMULATION OF LIGHT TRANSPORT

Chapter 3

Path Integral Formulation of Light
Transport

In this chapter, we will derive the mathematical framework of the path integral
method, and the rendering technique, bidirectional path-tracing, that arises from
this method. We will then discuss an essential sampling method called multiple
importance sampling which can be used in variance reduction.

3.1 Path integral mathematical framework
In Chapter 2, we have discussed the rendering equation which can be used to

express the light transport problem. The rendering methods that arise from the
rendering equation usually start at a point, such as a camera or a light source, and
then recursively find the next point by shooting out a ray into the scene. This means
that we can only find the next point by locally evaluating the current surface point.
The path integral formulation method, on the other hand, gives a global view of the
problem. For any two points in the scene, we can connect them by creating an edge
between them and perform a visibility test to see if they are mutually visible.

3.1.1 Three point form

We will start by transforming Equation 4, which uses an integral over solid
angle, into the light transport equation that uses an integral over surface area. In
the rendering equation, we find the incoming radiance on a point x by integrating
over all incoming directions. Another way is to integrate over all surface points
in the scene. To do this, we have to replace the directions ωi and ωo with surface

15

CHAPTER 3. PATH INTEGRAL FORMULATION OF LIGHT TRANSPORT

points x′ and x, where x′ is the point that gives out energy and x is the point that
receives energy. Thus, we can find the outgoing radiance from point x′ to point x
by rewriting the radiance term as:

L(x′ → x) = L(x′, ωo)

where ωo = ~x′x. The vector ~x′x represents the direction from x′ to x. Next, we can
rewrite the BRDF as:

fr(x′′ → x′ → x) = fr(x′, ωi, ωo)

where ωi = ~x′x′′ and ωo = ~x′x. Since we have to integrate over a set of surface
points, A, instead of the solid angle, Ω, we need to find the relationship between
unit area and the unit solid angle:

dw = dA |Nx′′ · ~x′′x′|
||x′′ − x′||2

Then we can rewrite the rendering equation with respect to surface points in the
area domain:

L(x′ → x) = Le(x′ → x) +
∫
x′′∈A

L(x′′ → x′)fr(x′′ → x′ → x)G(x′′ ↔ x′)dx′′ (5)

where we can find the outgoing radiance from point x′ to point x by integrating over
all surface points x′′ ∈ A. We can extract out the geometric term, G(x′′ ↔ x′) to
make the equation more compact. The G function is defined as:

G(x′′ ↔ x′) = V (x′′ ↔ x′) |Nx′′ · ~x′′x′| |Nx′ · ~x′x′′|
||x′′ − x′||2

V (x′′ ↔ x′) is the visibility function. V (x′′ ↔ x′) = 1 if we can shoot a ray from x′′

to x′ without hitting anything else, and V (x′′ ↔ x′) = 0 otherwise.

3.1.2 The Neumann Series Expansion

Since the Equation 5 has the same value L on both sides, it cannot be directly
evaluated. Instead, we can recursively replace the value on the right side with itself.
This is called the Neumann Series Expansion. Now, we can apply it to the equation,

16

CHAPTER 3. PATH INTEGRAL FORMULATION OF LIGHT TRANSPORT

and label the surface points hit in sequence as x0, x1, x2, x3, ...:

L(x1 → x0) = Le(x1 → x0) +
∫
A
Le(x2 → x1)fr(x2 → x1 → x0)G(x2 ↔ x1)dA

+
∫
A

∫
A
Le(x3 → x2)fr(x3 → x2 → x1)G(x3 ↔ x2)

fr(x2 → x1 → x0)G(x2 ↔ x1)dAdA

+ ...

(6)

Intuitively we can see it as the summation of the radiance found in all the paths of
length 1, 2, 3 and so on. We can write the Equation 6 in a compact form as:

L(x1 → x0) =
∞∑
i=1

L(~pi)

where ~pi is a path of length i:

~pi = x0, x1, x2, ..., xi

where x0 is the point on the eye, and xi is a point on the light source. L(~pi) gives
us the amount of radiance on path ~pi, and can be defined as:

L(~pi) =
∫
· · ·

∫
A
Le(xi → xi−1)(

i−1∏
j=1

fr(xj+1 → xj → xj−1)G(xj+1 ↔ xj))dA...dA

(7)

3.1.3 Monte Carlo estimation

The overall problem we are trying to solve, is to find the radiance Lp that goes
through a pixel p:

Lp =
∫
D
C(~p) dD (8)

where D is the set of all possible light paths in the scene, ~p represents a single light
path and C is the measurement contribution function that measures the radiance
contribution of the particular path. C is similar to Equation 7. For a particular
path ~pi of length i, it can be written as:

C(~pi) = Le(xi → xi−1)(
i−1∏
j=1

fr(xj+1 → xj → xj−1)G(xj+1 ↔ xj))We(x1 → x0)

where We(x1 → x0) is the potential flowing through the view plane. For a pixel,
We = 1 if a light ray hits it, and We = 0 otherwise.

17

CHAPTER 3. PATH INTEGRAL FORMULATION OF LIGHT TRANSPORT

With Monte Carlo estimation, we can approximate Equation 8 by taking the
average of N randomly sampled paths:

Lp = 1
N

N∑
i=1

C(~pi)
P (~pi)

where P (~pi) is the probability distribution function (PDF) of sampling the path ~pi.
The PDF of a path depends on all the choices made to create the path. Since we
usually get the PDF in the solid angle domain when we use BRDF to sample a new
direction, it is important to convert it into the area domain. The PDF with respect
to surface area P (x′) can be expressed in terms of P (ωo):

P (x′) = P (ωo)
|Nx′ · ~x′x| |Nx · ~xx′|

||x− x′||2

= P (~x′x)G(x′ ↔ x)

where x′ is the current surface point and x is the next hit point in the sampled
direction ωo = ~xx′.

With all these derivations, we are now able to compute the radiance of each
pixel by sampling and creating a number of paths in the scene. We can proceed
to explain how a bidirectional path-tracing method can be used to construct such
paths and gather them into the final results.

3.2 Bidirectional path-tracing
As introduced in Chapter 2, the bidirectional path-tracing is a hybrid ray-tracing

approach that combines both the path-tracing and light-tracing methods to solve
the light transport problem. It is also an algorithm arising from the path integral
formulation. In this section, we will discuss the mathematical derivation of the
algorithm.

3.2.1 Sampling the paths

In bidirectional path-tracing, we can trace rays from both the view point and
the light source. We can create a subpath Peye,s of length s starting from the eye:

Peye,s = x0, x1, x2, ..., xs

18

CHAPTER 3. PATH INTEGRAL FORMULATION OF LIGHT TRANSPORT

where x0 is the view point. We also create another subpath Plight,t of length t starting
from the light:

Plight,t = y0, y1, y2, ..., yt

where y0 is a point on the light. The length of each subpath s or t can be determined
by either setting an upper limit or by using a method called Russian Roulette to
randomly decide if the path should be terminated. We can then combine the two
subpaths by forming an edge between xs and yt to create a complete path Pi of
length i = s+ t+ 1 from the view point to the light:

Pi = x0, x1, x2, ..., xs, yt, yt−1, yt−2, ..., y0

To make sure it is a legal path we need to do a visibility test between points xs and
yt.

3.2.2 Contribution of a path

The radiance flowing through the pixel p can be approximated using the Monte
Carlo estimator:

Lp =
Neye∑
s=0

Nlight∑
t=0

ws,tV (s, t)Cs,t (9)

where Neye and Nlight are the lengths of eye subpath and light subpath respectively.
V (s, t) is the visibility test between end points of two subpaths. ws,t is a weight
function. Cs,t is the contribution of the eye subpath of length s and the light subpath
of length t.

Based on the variations of path lengths s and t, there are 4 distinct cases for us
to deal with when evaluating Cs,t:

• When s = 0 and t = 0, there is only one point on each path. The light is
directly visible to the eye. We can form an edge between x0 and y0, and the
contribution is:

C0,0 = Le(y0 → x0)G(y0 ↔ x0)

• When s > 0 and t = 0, there is only one point on the light subpath, and
more than one points on the eye subpath. This corresponds to the standard
path-tracing algorithm. Instead of using y0 as the point on the light source,

19

CHAPTER 3. PATH INTEGRAL FORMULATION OF LIGHT TRANSPORT

we can reduce the noise in the image by sampling a new point on the light
source. The contribution in this case is:

Cs,0 =Le(y0 → xs)
P (y0) fr(xs−1 → xs → y0)G(y0 ↔ xs)

(
s−1∏
i=1

fr(xi−1 → xi → xi+1) |Nxi
· ~xixi+1|

P (~xixi+1))

• When s = 0 and t > 0, there is only one point on the eye subpath, and more
than one points on the light subpath. This corresponds to the light-tracing
algorithm. The contribution in this case is:

C0,t = Le(y0 → y1)
P (y0)P (y0 → y1)(

t−1∏
i=1

fr(yi−1 → yi → yi+1) |Nyi
· ~yiyi+1|

P (~yiyi+1))

fr(yt−1 → yt → x0)G(yt ↔ x0)We(yt → x0)
P (x0)

Note that we have to take the potential flowing through the view plane, We,
into account because not all rays can hit the view plane.

• When s > 0 and t > 0, there is more than one points on the each subpath.
We can estimate the radiance that reaches the eye, on a path connected by
the end vertices of both eye and light subpaths. The contribution is:

Cs,t = Le(y0 → y1)
P (y0)P (y0 → y1)(

t−1∏
i=1

fr(yi−1 → yi → yi+1) |Nyi
· ~yiyi+1|

P (~yiyi+1))

fr(yt−1 → yt → xs)G(yt ↔ xs)fr(xs−1 → xs → yt)

(
s−1∏
i=1

fr(xi−1 → xi → xi+1) |Nxi
· ~xixi+1|

P (~xixi+1))

3.2.3 Weight of a path

For a path of length k, we can form k + 1 possible combinations of eye subpath
of length s and light subpath of length t, as follows:

s = 0, t = k

s = 1, t = k − 1
...

s = k − 1, t = 1

s = k, t = 0

20

CHAPTER 3. PATH INTEGRAL FORMULATION OF LIGHT TRANSPORT

We can treat the weight of a particular path as how likely the path will contribute
to the final radiance, and we are doing a weighted sum of all the possible contributions
of path with length k. Thus, the weights of all these contributions should sum up to
one.

k∑
s=0

ws,k−s = 1 for k = 0, 1, 2, ...

We can have various ways to distribute the weights. We can see the ws,t as a
distribution function, and use heuristics to solve it. The naive way to do it is to use
a uniform distribution where each contribution has the same weight:

ws,t = 1
s+ t+ 1

3.3 Multiple importance sampling
Using multiple importance sampling, we can distribute the weights in a better

way to reduce noise. This method looks at how the same path can be sampled
in different ways as well as the probability of sampling a particular path. Due to
restrictions on computational resources, we adopt an one-sample method where we
take only one sample from each possible path.

We can define the probability of sampling a particular path as pi, and the total
probability of sampling the path of length k is:

k+1∑
i=0

pi

We can then apply different heuristics to find ws,t based on the probabilities. One
way is to use the balance heuristic to find the weight of a path with probability pj:

ws,t = pj∑k+1
i=0 pi

Another way is to use the power heuristic:

ws,t =
pβj∑k+1
i=0 p

β
i

(10)

where β = 2 is found to be the optimal [27].
The PDF pj for a path can be evaluated by multiplying the PDF pL of sampling a

light subpath and PDF pE for an eye subpath. We can define pLi and pEi to represent

21

CHAPTER 3. PATH INTEGRAL FORMULATION OF LIGHT TRANSPORT

the probabilities for generating the first i vertices of the light and eye subpaths
respectively. These are defined as:

pL1 = P (y0)

pL2 = P (yi−2 → yi−1)G(yi−2 ↔ yi−1)pLi−1 for i ≥ 2

and similarly,

pE1 = P (x0)

pE2 = P (xi−2 → xi−1)G(xi−2 ↔ xi−1)pEi−1 for i ≥ 2

Using these probabilities, we can find the combined PDF pj as:

pj = pLs p
E
t

3.4 Summary
In this chapter, we have derived the mathematical framework for the path integral

formulation and the bidirectional path tracing with multiple importance sampling.
With the theoretical fundamentals, we can proceed to the implementation details of
our rendering framework, as well as important optimizations.

22

CHAPTER 4. IMPLEMENTATION DETAILS

Chapter 4

Implementation Details

In this chapter, we will introduce the DirectX Ray-tracing (DXR) pipeline and
the usage of various shaders. We will then present the implementation details of the
bidirectional path-tracing, introduced in Chapter 3, in our rendering framework.

4.1 Overview of shaders in DXR pipeline
DXR is designed to handle real-time ray-tracing and deal with the GPUs with

RTX cores. We will look at the DXR pipeline in details and provide essential
functions for ray-tracing.

Figure 4.1: High-level diagram of DXR pipeline. Fixed stages are in green and
programmable shaders are in blue. Modified from [29]

With reference to Figure 4.1, the DXR pipeline is split into five shaders:

1. Ray generation shader - defines how to start ray tracing and runs once per
pass or algorithm.

23

CHAPTER 4. IMPLEMENTATION DETAILS

2. Intersection shader(s) - define how rays intersect geometry and geometric
shapes, and are widely reusable (often in-built and in-default).

3. Miss shader(s) - define behavior when rays miss geometry, e.g. user-defined
behavior to use background color or read from environment maps.

4. Closest-hit shader(s) - run once per ray to shade the final hit.

5. Any-hit shader(s) - run once per hit to determine accept (when opague) or
ignore hit (when transparent).

The DXR pipeline can be viewed as abstractions of various behaviours needed to
perform ray-tracing. The ray generation shader is the entry point to spawn rays for
each pixel. The TraceRay() method generates a ray, which can be described by the
built-in data structure RayDesc. The ray is then tested with scene geometries with
the acceleration traversal, empowered by the ray-tracing hardware. The intersection
shader defines how to perform the testing of ray-geometry intersection. We usually
keep it as default when handling triangle patches. When there is a hit, we can
process it in the closest-hit shader. In this shader, we can extract the geometry and
material information of the surface point, and perform direct and indirect lighting
computation. When a ray does not hit anything, a miss shader will be called to
handle it. The any-hit shader is used to test the transparency of any surface point,
and will ignore the hit if it is transparent.

Algorithm 1: An abstraction of shooting a ray
Global: scene structure scene
Input: Ray origin o, ray direction d, minimum intersection distance tmin and

maximum intersection distance tmax
Output: Hit or miss information payload

1: Procedure ShootRay:
2: initialize RayDesc ray
3: ray.Origin← origin
4: ray.Direction← direction
5: ray.TMin← tmin
6: ray.TMax← tmax

7: initialize RayPayload payload
8: TraceRay(scene, ray, payload)

24

CHAPTER 4. IMPLEMENTATION DETAILS

We provide an abstraction of details needed to shoot a ray in Algorithm 1. It
takes in the ray origin, direction, minimum and maximum intersection distances as
parameters, and will get the hit or miss information stored in the RayPayload. Note
that in the pseudo-code, we omit the indices of hit and miss shader to use in the
TraceRay() function.

4.2 Implementation of bidirectional path-tracing
In this section, we will explain the implementation details of bidirectional path-

tracing with pseudo-codes.

4.2.1 Overview

Figure 4.2: Overview of implementation of bidirectional path tracing

Since NVIDIA team provides the Falcor framework that caters to researchers
with abstractions of scene geometry and material handling, low-level DXR APIs and
GUIs, we decide to build our rendering framework on top of that to avoid repetitive
work. With reference to Figure 4.2, the bidirectional path-tracing can be split into
two main rendering passes, namely G-buffer and path integral formulation. G-buffer
is used to extract scene information into textures so that subsequent rendering

25

CHAPTER 4. IMPLEMENTATION DETAILS

passes can reuse the data. The path integral formulation evaluates the radiance of
all pixels in the image.

4.2.2 G-buffer

G-buffer stores geometrical information of the scene for each pixel, including
world position, world normal, view direction from the camera. It also contains
material information such as diffuse color, specular color, roughness and type of
material. It can have extra information such as index of refraction.

We can illustrate the implementation of shaders in a ray-traced G-buffer from
the view of a pinhole camera with Algorithm 2. Note that we omit the miss shader
in our pseudo-code because we can simply leave it as default.

Algorithm 2: Ray generation, closest-hit and any-hit shaders for G-buffer
Global: scene structure scene, camera settings including world position and

coordinate frame axes, camera
1: Procedure RayGenerationShader:
2: curP ixel← DispatchRaysIndex().xy
3: totalP ixels← DispatchRaysDimensions().xy
4: pixelCentre← (curP ixel + (0.5, 0.5))/totalP ixels
5: ndc← (2,−2) ∗ pixelCenter + (−1, 1)
6: rayDirection← ndc.x ∗ camera.U + ndc.y ∗ camera.V + camera.W

7: payload← ShootRay(camera.position, rayDirection, 0, inf)
8: outputTexture[curP ixel]← payload.attribute

9: Procedure ClosestHitShader:
10: Extract geometry and material information from the hit point.
11: Store into payload.

12: Procedure AnyHitShader:
13: Test if the hit point is transparent.
14: if transparent then
15: Ignore hit
16: else
17: Accept hit

4.2.3 Path construction

The path construction traces rays from both the camera and a sampled point
on the randomly selected light source, and store essential information of all the hit

26

CHAPTER 4. IMPLEMENTATION DETAILS

vertices. The path construction part is done in the ray generation shader, where we
construct two sets of vertices, light paths and eye paths for each pixel. To do so, we
first design a compact data structure PathV ertex to store the vertices. We need to
have the following information of a vertex:

• Geometric information: it consists of the position P of the vertex in the world
coordinate, the surface normal vector N and the normalized view direction
vector V .

• Material information: it consists of the diffuse color dif , specular color spec
of the material, and the roughness rough to simulate metallic material.

• Path information: it consists of a three-dimensional vector radiance that
represents the radiance leaving the vertex, the probability distribution pdf

of sampling the outgoing direction, and the type of BRDF type used for the
vertex.

Since we have 6 three-dimensional vectors of floats, 2 floats and 1 unsigned integer,
we can compact these attributes into an array of float4 of size 5, i.e. float4[5], and an
unsigned integer. The total size of the data stored for one vertex is 5× 16 + 2 = 82
bytes.

4.2.3.1 Eye path construction

To construct the eye path, we start tracing a ray from a sampled point on the
camera, and store every hit point into the array of PathV ertex depending on the
maximum eye path length S. Since we already have the primary hit information in
G-buffer, we can simply extract it and start tracing the ray from the hit.

The first vertex v1 of the path is a sampled point on the camera. For a pinhole
camera, there is only one point to sample, which is the position of the camera itself.
The normal vector is the z-axis of the camera coordinate frame. The potential of
the camera is always 1 since the ray is calculated based on the pixel position and
will always hit the image plane. The sampling probability is also 1 because we only
have one choice of selecting the point on camera, and only one direction to sample
for a particular pixel. We can keep the rest attributes as zero because they will not
be used.

27

CHAPTER 4. IMPLEMENTATION DETAILS

Algorithm 3: Sample BRDF
Input: Vertex v that contains geometric and material information
Output: Sampled direction L, sampling probability pdf and radiance radiance

in the sampled direction
1: Procedure SampleBRDF:
2: radiance← 0
3: type← SampleBRDFType(v.type)
4: p← GetProbabilityOfChosenType(type)
5: if type = DIFFUSE then
6: L← SampleHemisphere(v.N)
7: pdf ← clamp(N · L, 0, 1)/π
8: radiance← EvaluateDiffuse(v, L)/p
9: else if type = REFLECTION then

10: L, pdf ← SampleReflectionLobe(v.N)
11: radiance← EvaluateReflection(v, L)/p
12: else if type = REFRACTION then
13: L, pdf ← SampleRefractionLobe(v.N)
14: radiance← EvaluateRefraction(v, L)/p
15: return L, pdf, radiance

The second vertex v2 of the path is loaded from G-buffer. We can get the
geometric and material information. We will then sample the BRDF of the vertex
to generate the direction L of the next ray segment, and compute the PDF of
sampling. The radiance of the vertex in that particular direction is then evaluated.
Algorithm 3 illustrates how to do so based on the material models such as lambertian
diffuse models. Then we will shoot another ray starting from the vertex v2 in the
direction L, i,e. ShootRay(v2.P, L, 0, inf). Then we can repeat the above to handle
subsequent vertices hit.

With reference to Algorithm 4, we adopt an iterative ray tracing method to
generate ray segments based on the current hit point. This allows us to transfer the
BRDF samples from closest-hit shader to the ray generation shader via RayPayload.
Note that payload here will contain all attributes of PathV ertex and three more
fields: origin and direction of the next ray segment, and a boolean indicator if the
ray should be terminated when it misses all scene geometry. Thus, we can compact
them into an array of float4 of size 7, which requires 7×16 = 112 bytes for a payload.

28

CHAPTER 4. IMPLEMENTATION DETAILS

Algorithm 4: Ray generation, closest-hit and miss shaders for eye path
construction
1: Procedure RayGenerationShader:
2: curP ixel← DispatchRaysIndex().xy
3: initialize PathV ertex eyePath[MAX_EY E_PATH_LENGTH]
4: eyePath[0]← ExtractCameraData(camera)
5: primaryHit← LoadFromGBuffer(curP ixel)
6: rayDirection, pdf, primaryHitRadiance← SampleBRDF (primaryHit)
7: rayOrigin← primaryHit.P

8: for i← 2 to MAX_EY E_PATH_LENGTH − 1 do
9: payload← ShootRay(rayOrigin, rayDirection, 0, inf)

10: if payload.terminated = True then
11: break
12: rayDirection← payload.rayDirection
13: rayOrigin← payload.rayOrigin
14: eyePath[i]← ExtractDataFromPayload(payload)

15: Procedure ClosestHitShader:
16: payload.rayOrigin← v.P
17: payload.rayDirection, payload.pdf, payload.radiance← SampleBRDF (v)

18: Procedure MissShader:
19: payload.terminated← True

4.2.3.2 Light path construction

The light path construction is similar to the eye path construction except that
the first vertex is a sample on a randomly chosen light source, and we cannot make
use of G-buffer for the primary hit. To get the first vertex, we can perform the
following steps:

1. Randomly select a light source. Since in the Falcor framework, we have an
array of light objects, we can generate a random number in [0, Nl − 1], where
Nl is the number of lights. The sampling PDF is 1

Nl

2. Sample the position on the chosen light and a direction of the light ray. The
position, direction and the sampling PDF will depend on the light models such
as point light, directional light and area light.

3. Store the position, sampling PDF, light intensity into a PathV ertex.

29

CHAPTER 4. IMPLEMENTATION DETAILS

Then, we can shoot rays iteratively to find the rest of the path vertices, similar
to Algorithm 4.

4.2.4 Path integration

After constructing the two subpaths, we can evaluate the contribution of a
particular path by handling the 4 cases mentioned in § 3.2.2. For case 1, we can
simply add the emissive color loaded from G-buffer. For case 2, we will loop through
all the vertices in the eye path, and do direct lighting computation on each vertex.
Algorithm 5 illustrates how we handle this case by using an iterative approach to
sum the weighted contributions from the eye path when the length of light path is 0.

Algorithm 5: Handle Case 2: Iterative way of path-tracing
Input: Eye path, eyePath, and the current pixel location, curP ixel

1: Procedure HandleCase2:
2: contribution← 0
3: for i← 1 to MAX_DEPTH do
4: unweightedContribution←

eyePath[i− 1].radiance ∗ EvaluateDirectIllumination(eyePath[i])
5: contribution←

contribution+GetWeight(i, 0) ∗ unweightedContribution
6: outputTexture[curP ixel]← outputTexture[curP ixel] + contribution

Similarly, for case 3, we can use the same approach for the light path, except
that we have to compute the pixel location given a direction to camera. Algorithm 6
shows how we handle case 3 with a pinhole camera model.

For case 4, we have to form a connecting edge between the end vertices from
both the light subpath and eye subpath, and do a visibility test.

4.2.5 Multiple importance sampling

The multiple importance sampling finds the weight of a path parametrized by
the eye path length s, and light path length t. We adopt the power heuristics as
shown in Equation 10. We use Algorithm 8 to illustrate how the weight is computed
making use of the pdf stored in a PathV ertex.

30

CHAPTER 4. IMPLEMENTATION DETAILS

Algorithm 6: Handle Case 3: Iterative way of light-tracing
Input: Light path, lightPath

1: Procedure HandleCase3:
2: contribution← 0
3: for i← 1 to MAX_DEPTH do
4: directionToCamera← normalize(camera.position− lightPath[i].P)
5: radiance← EvaluateBRDF (lightPath[i], directionToCamera)
6: visible← TestV isibilityToCamera(lightPath[i])
7: if visible then
8: pixelLocaition← FindPixelLocation(directionToCamera)
9: contribution←

contribution+GetWeight(0, i) ∗ unweightedContribution
10: outputTexture[pixelLocation]←

outputTexture[pixelLocation] + contribution

11: Procedure FindPixelLocation:
12: d1← dir · camera.U / ||camera.U||
13: d2← dir · camera.V / ||camera.V||
14: d3← dir · camera.W / ||camera.W||
15: ndc← (d1/d3,−d2/d3)
16: pixelCenter ← ndc ∗ (0.5, 0.5) + (0.5, 0.5)
17: pixelLocation← round(pixelCenter ∗ totalP ixels)
18: return pixelLocation

31

CHAPTER 4. IMPLEMENTATION DETAILS

Algorithm 7: Handle Case 4: Forming connecting edge and test visibility
Input: Eye path, eyePath, light path lightPath, and the current pixel location,

curP ixel
1: Procedure HandleCase4:
2: contribution← 0
3: for i← 2 to MAX_DEPTH do
4: for s← 1 to MAX_DEPTH − 1 do
5: t← i− s
6: aL← lightPath[t− 1].radiance
7: aE ← eyePath[s− 1].radiance
8: lightPathEnd← lightPath[t]
9: eyePathEnd← eyePath[s]

10: edgeDirection← normalize(lightPathEnd.P − eyePathEnd.P)
11: fsL← EvaluateBRDF (lightPathEnd,−edgeDirection)
12: fsE ← EvaluateBRDF (eyePathEnd, edgeDirection)
13: G← EvaluateG(lightPathEnd, eyePathEnd)
14: unweightedContribution← aL ∗ aE ∗ fsL ∗ fsE ∗G
15: contribution←

contribution+GetWeight(s, t) ∗ unweightedContribution
16: outputTexture[curP ixel]← outputTexture[curP ixel]+contribution

17: Procedure EvaluateG:
18: posA← v1.P
19: posB ← v2.P
20: directionAB ← normalize(posB − posA)
21: visible← TestV isibility(posA, posB)
22: if visible then
23: cosA← |v1.N · directionAB|
24: cosB ← |v2.N · directionAB|
25: invLengthAB ← 1/length(posB − posA) return

cosA ∗ cosB ∗ invLengthAB ∗ invLengthAB
26: else
27: return 0

32

CHAPTER 4. IMPLEMENTATION DETAILS

Algorithm 8: Evaluate the weight using multiple importance sampling
Input: Eye path, eyePath, light path lightPath, eye path length s, light path

length t
1: Procedure GetWeight:
2: totalLength← s+ t
3: totalPdf ← 0
4: for i← 0 to totalLength do
5: j ← totalLength− i
6: pE ← eyePath[0].pdf
7: for x← 1 to i do
8: pE ← pE ∗ eyePath[x].pdf ∗ EvaluateG(eyePath[x− 1], eyePath[x])
9: pL← lightPath[0].pdf

10: for y ← 1 to j do
11: pL←

pL ∗ lightPath[y].pdf ∗ EvaluateG(lightPath[y − 1], lightPath[y])
12: totalPdf ← totalPdf + (pE ∗ pL)2

13: if i = s, j = t then
14: currentPdf ← (pE ∗ pL)2

15: return currentPdf/totalPdf

33

CHAPTER 5. RESULTS

Chapter 5

Results

In this chapter, we will present rendering results in various scenarios. We will
compare the our bidirectional path-tracing with the standard path-tracing with next
event estimation (NEE). In the first section, we compare image quality using three
different settings with the well-known Cornell Box [18]. The Cornell Box is a simple
but powerful scene that allows us to experiment diffuse-diffuse, diffuse-specular
and specular-specular interactions. In the second section, we compare the speed
and memory complexity using the number of rays per pixel as an indicator. In
Appendix A, we also present various complex scenes rendered to showcase the
capability of our framework.

5.1 Image quality
The first criteria for comparison is the image quality. We will compare the

noise level in the image without denoising, and compare the convergence rate when
increasing number of samples per pixel. We will look at important features in images,
such as caustics, color bleedings, reflections, ambient occlusions and hard shadows.

5.1.1 Output images without denoising

In the first experiment, we set all walls as diffuse so that we can see the interactions
between diffuse surfaces. We also set two spheres as reflective in order to see mutual
reflections. With reference to Figure 5.1, it is rendered by our bidirectional path-
tracing. Compared to Figure 5.2, our result contains less noise on the walls and on
the specular sphere. The ambient occlusions and shadows in our result are sharper,

34

CHAPTER 5. RESULTS

which can be observed at the left side of the sphere and the ceiling in the reflection.

Figure 5.1: Bidirectional path-tracing: Cornell Box with two specular spheres

Figure 5.2: Standard path-tracing: Cornell Box with two specular spheres

Our second experiment has the back wall as specular and one specular sphere,
because we want to investigate the noise level of a large flat specular surface, as well
as the mutual reflections. In Figure 5.3, we can also observe that the noise level is
lower than Figure 5.4 at both the specular and diffuse walls. The ambient occlusion
at the sides of the back wall is also sharper.

In the third experiment, we simulate water reflections to produce caustics. Unlike
the caustics by refraction through a glass ball, it is difficult to generate this effect in

35

CHAPTER 5. RESULTS

Figure 5.3: Bidirectional path-tracing: Cornell Box with one specular sphere and
back wall

Figure 5.4: Standard path-tracing: Cornell Box with one specular sphere and back
wall

the standard path-tracing algorithm. In Figure 5.5, the caustics on the back wall is
obvious while we can hardly see any in Figure 5.6.

5.1.2 Images with temporal accumulation

The temporal accumulation pass takes the average of all the past frames. We
can use this pass to denoise and control the number of samples per pixel. With the
similar amount of rendering time, we can compare bidirectional path-tracing with 10

36

CHAPTER 5. RESULTS

Figure 5.5: Bidirectional path-tracing: Cornell Box with reflective water surface

Figure 5.6: Standard path-tracing: Cornell Box with reflective water surface

frames accumulated and standard path-tracing with 40 frames accumulated. With
reference to Figure 5.7 and Figure 5.8, the difference in the noise level is negligible
as we can observe clearly every important features in the scene.

However, comparing Figure 5.9 and Figure 5.10, the caustics by water reflection
are much clearer and sharper in our result, and we can only see a little of caustics
on the right side of the wall in the image using path-tracing.

37

CHAPTER 5. RESULTS

Figure 5.7: Bidirectional path-tracing with 10 frames accumulated: Cornell Box
with one specular sphere and back wall

Figure 5.8: Standard path-tracing with 40 frames accumulated: Cornell Box with
one specular sphere and back wall

5.1.3 Denoising by BMFR

After the denoising pass making use of BMFR, we can compare the denoised
and raw images. With reference to Figure 5.11, Figure 5.12 and Figure 5.13, the
left half of the images are denoised and the right half are not. We can see that the
denoiser is able to maintain important features such as caustics, color bleedings,
ambient occlusions, hard shadows and mutual reflections. However, we can still see

38

CHAPTER 5. RESULTS

Figure 5.9: Bidirectional path-tracing with 10 frames accumulated: Cornell Box
with reflective water surface

Figure 5.10: Standard path-tracing with 40 frames accumulated: Cornell Box with
reflective water surface

a bit of jaggies at the edge of walls.

5.2 Speed and memory complexity
In this section, we will compare the speed and memory complexity between

bidirectional path-tracing and standard path-tracing.

39

CHAPTER 5. RESULTS

Figure 5.11: Cornell Box with two specular spheres: denoised (left half) and raw
(right half)

Figure 5.12: Cornell Box with one specular sphere and back wall: denoised (left
half) and raw (right half)

5.2.1 Speed

We will evaluate the speed complexity by the number of rays generated per pixel
because the testing of ray-geometry intersection is still the most expensive operation
in ray-tracing even with the hardware acceleration.

In the standard path-tracing, one primary ray is generated per pixel. Once the
ray hits a surface point, it bounces off by generating another ray, until the ray misses

40

CHAPTER 5. RESULTS

Figure 5.13: Cornell Box with reflective water surface: denoised (left half) and raw
(right half)

all geometry or reach the maximum depth limit D. For each hit point, a shadow
ray is shoot towards a random light source for direct illumination. This is required
in the next event estimation to bring down the noise. Therefore, the total number
of rays needed for one pixel is 2D.

On the other hand, the bidirectional path-tracing requires 2D rays per pixel in
the path construction step because light subpath and eye subpath spend D rays
each. For testing visibility between end points, we need to generate 2× (1 + 2 + 3 +
...+D) = D +D2 rays. Therefore, the total number of rays needed for one pixel is
2D +D +D2 = D2 + 3D.

Thus, we can see that the complexity of bidirectional path-tracing is quadratic
and that of path-tracing is linear. The rendering time ratio is:

Tbpt
Tspt

= D2 + 3D
2D = 0.5D + 1.5

Since we use D = 4 in our experiments, the ratio is 3.5 and that means bidirec-
tional path-tracing takes 2.5 times longer rendering time than path-tracing. That is
also why we compare bidirectional path-tracing with 10 accumulated frames with
standard path-tracing with 40 accumulated frames.

To render images with resolution of 1280× 720, with Intel Core i7-9700K CPU
@ 3.60GHz and ZOTAC Gaming GeForce RTX 2070 Super 8GB RAM, we are able

41

CHAPTER 5. RESULTS

to achieve above 30 FPS for bidirectional path-tracing. With standard path-tracing,
the FPS is beyond 120.

5.2.2 Memory

We will evaluate the memory complexity by the intermediate results stored in
the GPUs. Since both bidirectional path-tracing and standard path-tracing uses
G-buffer, the memory complexity is linearly proportional to the number of textures
Nt for storing pixel information and the total number of pixels Np. Since each
texture is a two-dimensional array of float4, it takes 16Np bytes per texture, and
16NpNt bytes in total. For bidirectional path-tracing, we need some additional
space to store path vertices for each pixel, because ray generation shaders are
executed in parallel. As discussed in § 4.2.3, we need 82 bytes for each path
vertex, and the total additional space is 82 × 2 × D × Np = 164DNp where D
is the maximum path length. In our experiments, the G-buffer uses 8 textures,
and the total number of pixel is 1280 × 720 = 921600. We can convert 921600
bytes to 0.88 Megabytes. The total memory usage for bidirectional path-tracing is
(16× 8 + 82× 2× 4)× 0.88 = 692 Megabytes while that for standard path-tracing is
16× 8× 0.88 = 113 Megabytes. In both algorithms, the memory usage is acceptable
given the current GPU RAMs.

5.3 Summary
After evaluating image quality, speed and memory complexity, we can see that

bidirectional path-tracing is able to produce images with low level of noise, and after
denoising, the important features remain clear and sharp. Although it is much more
computationally expensive than standard path-tracing, we are still able to achieve
above 30 FPS, which is in real-time. With the continuous advancement in GPUs,
we believe that the FPS can be further increased to 60 and above.

42

CHAPTER 6. DISCUSSION

Chapter 6

Discussion

In the previous chapters, we have presented the theory needed to implement a
bidirectional path-tracer, our implementation details as well as the rendered results.
There is, however, still some improvement that can be done. We will provide several
possible solutions for that. We will also compare the bidirectional path-tracing with
other rendering techniques to evaluate the advantages and limitations inherently
existing in the algorithm itself.

6.1 Possible improvement in our implementation
The speed of our implementation can be improved by reducing the amount

of visibility tests between the end vertices of subpaths. One way is to use group
visibility testing described by Dr. Eric Veach [27], and another way is to use the
probabilistic connections [23]. We did not focus on the optimization of bidirectional
path-tracing because our emphasis is on the exploration and testing with the DXR.
It is also possible to optimize the testing of ray-geometry intersection from the
shaders by reducing the payload size carried along with each ray. This reduces the
overhead in the hardware. These two areas of improvement can significantly increase
the speed because these are usually the bottlenecks.

The accuracy of our implementation can also be improved by using the Russian
Roulette method to randomly terminate a ray instead of setting a limit on the
maximum ray depth. Our current implementation might introduce certain bias
depending on the depth limit. For example, in Figure 5.1, it is supposed to have
infinite reflections of spheres, but due to the depth limit, the reflection will end at
certain depth. However, such bias is almost negligible given a reasonable depth limit.

43

CHAPTER 6. DISCUSSION

Using the Russian Roulette will lead to additional time complexity, and thus it is a
trade-off between accuracy and speed.

In our implementation, we only uses a few camera, light and material models.
For cameras, we consider a pinhole camera and a thin lens camera to possibly
simulate depth-of-field effects. It is possible to consider a prospective camera. For
lights, we have a point light and a directional light. It will be great to add an area
light and a spot light. For materials, we have lambertian diffuse and GGX [28]
microfacet models for specular reflection and refraction. It is also good to have
more material models to enhance the capability of rendering photo-realistic images.
In our experiments, we presented three different settings to investigate the noise
level and denoising quality of diffuse-diffuse, diffuse-specular and specular-specular
interactions. With more camera, light and material models, we are able to come up
with a great variety of scenes to test the robustness of our framework.

There is a problem in our implementation that we did not consider paths with no
vertex on either light subpath or eye subpath because we do not have intersect-able
geometry for lights and camera lens in our scenes. Considering such paths will only
add waste to computational resources because it is impossible for a ray to reach
such light or camera as the end point. However, if the light sources and cameras can
be intersected by rays, and have significantly size in the scene, we have to consider
those paths, which will increase the time complexity in the path construction stage.

In our experiments, it will be great if we can adopt statistical methods to analyze
the amount of noise with respect to a reference image. For example, we can calculate
the variance of colors on a surface, and compare the mean square distance of the
pixel colors. Statistics will provide us good numerical indicators of noise.

6.2 Comparison with other rendering techniques
If we compare bidirectional path tracing with standard path tracing, we saw

in Chapter 5 that bidirectional path tracing performs a lot better in terms of low
noise level. This is especially in the scenes where there is little direct lighting and in
the scenes containing caustics. However, bidirectional path tracing has some cases
that it could perform poorly. For instance, it is not very efficient for outdoor scenes
because shooting rays from the sun will lead to a very small probability of hitting

44

CHAPTER 6. DISCUSSION

the scene. Another example is that we have a building with many rooms and each
room has its own light source. If the camera is placed in one of the rooms and the
doors between the rooms are closed, then bidirectional path tracing will need a large
amount of time constructing the light subpath, which will hardly be connected to
the eye subpath. If one of the doors is open, the probability might increase but still
remains low.

Another well-known method is photon mapping, as introduced in Chapter 2.
The benefit of photon mapping is that it requires a small number of rays and it
can produce noise-free images. However, it is biased towards how many photons
are used. If we use a small number of photons, it will create artifacts no matter
how long we render it. Bidirectional path-tracing, on the other hand, is unbiased.
If we use the Russian Roulette method, it is guaranteed not to have any artifacts
after sufficient rendering time. In addition, the time and space complexity of photon
mapping is highly dependent on the data structure used to store photons. If we use
a large amount of photons to avoid artifacts, the construction, node insertion and
searching time needed in a K-dimensional tree will increase significantly. Since we
do not have hardware acceleration for kd-tree operations, the impact of RTX GPUs
on photon mapping is limited.

Another rendering technique called metropolis light transport [27] is better at
handling scenes that is lit through small openings such as doors and windows. This
method is a popular extension to bidirectional path tracing to handle a wider range
of scenes. Another possible extension is the vertex connection and merging [10]
which makes use of both bidirectional path-tracing and photon mapping. These
rendering techniques could be possible directions to go, but we still need to explore
the performance of them on RTX GPUs.

45

CHAPTER 7. FUTURE WORK AND CONCLUSION

Chapter 7

Future Work and Conclusion

7.1 Future research directions
We will provide several future research directions which we have considered

but yet have time to do so. The most straightforward direction is to continue
improving and optimizing the current framework as discussed in Chapter 6, so that
it can be more efficient and capable of handling a wide range of scenes. The second
direction would be focusing on realizing physically correct motion blur, which is
mostly produced as a post-processing effect in current production work. Making
the motion blur physically plausible will enhance the immersive experience of users
in games, films and virtual environments. Another possible direction is to develop
a lightweight denoiser specifically designed to handle the noise level in the current
framework. Last but not least, we can add other rendering techniques such as
metropolis light transport and vertex connection and merging into the framework.

7.2 Conclusion
In this dissertation, we have presented a robust and noise-free rendering frame-

work that can generate caustics and global illumination in real-time. Although the
current rendering speed is only above 30 frames per second, we believe that after
further improvements and optimizations, it can have a great performance. With the
increasing trend of GPU computational power, we can foresee the application of our
work because of the fast convergence rate with an increasing number of samples per
pixel. Our rendering frame can also be further extended to various techniques based
on the path integral formulation of light transport.

46

BIBLIOGRAPHY

Bibliography
[1] B. Abdollah-shamshir-saz, “Voxel based hybrid path tracing with spatial

denoising”, in In Proceedings of I3D Symposium, Montreal, Quebec, Canada,
15-18 May 2018, 2 pages., 2018.

[2] P. Andersson, J. Nilsson, M. Salvi, J. Spjut, and T. Akenine-Möller, “Tempo-
rally dense ray tracing”, in High Performance Graphics, ACM, 2019.

[3] N. Benty, K.-H. Yao, P. Clarberg, L. Chen, S. Kallweit, T. Foley, M. Oakes, C.
Lavelle, and C. Wyman, “The Falcor rendering framework”, https://github.
com/NVIDIAGameWorks/Falcor, Mar. 2020. [Online]. Available: https://
github.com/NVIDIAGameWorks/Falcor.

[4] A. Benyoub, “Leveraging ray tracing hardware acceleration in unity”, in Digital
Dragons, 2019.

[5] C. R. A. Chaitanya, A. S. Kaplanyan, C. Schied, M. Salvi, A. Lefohn, D.
Nowrouzezahrai, and T. Aila, “Interactive reconstruction of monte carlo image
sequences using a recurrent denoising autoencoder”, in ACM Trans. Graph.
36, 4, Article 98, ACM, 2017.

[6] C. D. Christoph Schied Christoph Peters, “Gradient estimation for real-time
adaptive temporal filtering”, in Proceedings of the ACM on Computer Graphics
and Interactive Techniques, ACM, 2018.

[7] M. F. Christopher Kulla, “Importance sampling techniques for path tracing in
participating media”, in Computer Graphics Forum, Volume 31 Issue 4, The
Eurographs Association & John Wiley & Sons, Ltd. Chichester, UK, 2012,
pp. 1519–1528.

[8] H. Dammertz, D. Sewtz, J. Hanika, and H. P. Lensch, “Edge-avoiding à-trous
wavelet transform for fast global illumination filtering”, in High Performance
Graphics, ACM, 2010.

47

https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor

BIBLIOGRAPHY

[9] A. Frühstück and S. Prast, “Caustics , light shafts , god rays”,, 2011.

[10] I. Georgiev, J. Křivánek, T. Davidovič, and P. Slusallek, “Light transport
simulation with vertex connection and merging”, ACM Trans. Graph., vol. 31,
no. 6, 192:1–192:10, Nov. 2012, issn: 0730-0301. [Online]. Available: http:
//doi.acm.org/10.1145/2366145.2366211.

[11] P. S. Heckbert, “Adaptive radiosity textures for bidirectional ray tracing”, in
ACM SIGGRAPH Computer Graphics, 1990.

[12] P. H. C. Henrik Wann Jensen, “Efficient simulation of light transport in scences
with participating media using photon maps”, in SIGGRAPH ’98, ACM Press,
New York, New York, USA, 1998, pp. 311–320.

[13] W. Jarosz, A. Enayet, A. Kensler, C. Kilpatrick, and P. Christensen, “Orthog-
onal array sampling for monte carlo rendering”, in Computer Graphics Forum
(Proceedings of EGSR), 2019.

[14] J. S. Kaiming He and X. Tang, “Guided image filtering”, in IEEE TRANS-
ACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,
IEEE, 2013.

[15] J. T. Kajiya, “The rendering equation”, in SIGGRAPH ’86, ACM, New York,
NY, USA, 1986, pp. 143–150.

[16] M. Mara, M. McGuire, B. Bitterli, and W. Jarosz, “An efficient denoising
algorithm for global illumination”, in High Performance Graphics, ACM, 2017.

[17] K. I. Matias Koskela, “Blockwise multi-order feature regression for real-time
path tracing reconstruction”, in Transactions on Graphics (TOG), ACM, 2019.

[18] M. McGuire, “Computer graphics archive”, https://casual-effects.com/data,
Jul. 2017. [Online]. Available: https://casual-effects.com/data.

[19] B. B. Michael Mara Morgan McGuire and W. Jarosz, “An efficient denoising
algorithm for global illumination”, in High Performance Graphics, ACM, 2017.

[20] P. S. Nima Khademi Kalantari Steve Bako, “A machine learning approach for
filtering monte carlo noise”, in ACM Transactions on Graphics (TOG), ACM,
2015.

48

http://doi.acm.org/10.1145/2366145.2366211
http://doi.acm.org/10.1145/2366145.2366211
https://casual-effects.com/data

BIBLIOGRAPHY

[21] C. Schied, A. Kaplanyan, C. Wyman, A. Patney, C. R. A. Chaitanya, J.
Burgess, S. Liu, C. Dachsbacher, A. Lefohn, and M. Salvi, “Spatiotemporal
variance-guided filtering”, in High Performance Graphics, ACM, 2017.

[22] K. Shkurko, C. Yuksel, D. Kopta, I. Mallett, and E. Brunvand, “Time interval
ray tracing for motion blur”, in IEEE Transactions on Visualization and
Computer Graphics, Volume 24 Issue 12, IEEE, 2017, pp. 3225–3238.

[23] P. Stefan, R. Ravi, D. Fredo, and D. George, “Probabilistic Connections for
Bidirectional Path Tracing”, Computer Graphics Forum, 2015.

[24] H. W. J. Toshiya Hachisuka, “Stochastic progressive photon mapping”, in
SIGGRAPH Asia ’09 ACM SIGGRAPH Asia 2009 papers, ACM New York,
NY, USA, 2009.

[25] H. W. J. Toshiya Hachisuka Shinji Ogaki, “Progressive photon mapping”, in
SIGGRAPH Asia ’08 ACM SIGGRAPH Asia 2008 papers, ACM New York,
NY, USA, 2008.

[26] Unity, “Unity manual”, http://docs.unity3d.com/Manual/index.html,
2019. [Online]. Available: http://docs.unity3d.com/Manual/index.html.

[27] E. Veach, “Robust monte carlo methods for light transport simulation”,, 1998.

[28] B. Walter, S. Marschner, H. Li, and K. E. Torrance, “Microfacet models for
refraction through rough surfaces”, in Rendering Techniques, 2007.

[29] C. Wyman, S. Hargreaves, P. Shirley, and C. Barr-Brisebois, “Introduction
to directx raytracing”, http://intro-to-dxr.cwyman.org/, 2018. [Online].
Available: http://intro-to-dxr.cwyman.org/.

49

http://docs.unity3d.com/Manual/index.html
http://docs.unity3d.com/Manual/index.html
http://intro-to-dxr.cwyman.org/
http://intro-to-dxr.cwyman.org/

APPENDIX A. IMAGE GALLERY

Appendix A

Image Gallery
The models of the following scenes are taken from McGuire Computer Graphics

Archive at https://casual-effects.com/data/. We render the following scenes
in our framework, with 1000 accumulated frames and maximum ray depth of 4. All
rendered within 1 minute.

Figure A.1: Arcade

50

https://casual-effects.com/data/

APPENDIX A. IMAGE GALLERY

Figure A.2: Bedroom

Figure A.3: Conference

51

APPENDIX A. IMAGE GALLERY

Figure A.4: Pink room

Figure A.5: Salle De Bain

52

APPENDIX A. IMAGE GALLERY

Figure A.6: Sponza

53

	Abstract
	Acknowledgments
	Contents
	List of Figures
	Introduction
	The problems in current production work
	High-level structure of rendering framework
	Summary of original contributions
	Reproducibility of work
	Thesis synopsis

	Literature Review
	Light patterns
	Light transport mathematical framework
	Radiometry
	Rendering equation

	Rendering techniques
	Path-tracing
	Forward ray-tracing
	Hybrid ray-tracing
	Photon mapping

	Denoising techniques
	Sampling
	Signal processing
	Spatio-temporal

	Summary

	Path Integral Formulation of Light Transport
	Path integral mathematical framework
	Three point form
	The Neumann Series Expansion
	Monte Carlo estimation

	Bidirectional path-tracing
	Sampling the paths
	Contribution of a path
	Weight of a path

	Multiple importance sampling
	Summary

	Implementation Details
	Overview of shaders in DXR pipeline
	Implementation of bidirectional path-tracing
	Overview
	G-buffer
	Path construction
	Path integration
	Multiple importance sampling

	Results
	Image quality
	Output images without denoising
	Images with temporal accumulation
	Denoising by BMFR

	Speed and memory complexity
	Speed
	Memory

	Summary

	Discussion
	Possible improvement in our implementation
	Comparison with other rendering techniques

	Future Work and Conclusion
	Future research directions
	Conclusion

	Bibliography
	Image Gallery

